世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

電気自動車用電動モーター 2025-2035年:技術、材料、市場、予測


Electric Motors for Electric Vehicles 2025-2035: Technologies, Materials, Markets, and Forecasts

電気モーターはまさに電気自動車(EV)の原動力である。バッテリーとパワーエレクトロニクスに加え、電気モーターはドライブトレインの重要なコンポーネントです。電気モーターはもともと1800年代に開発された... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2024年8月27日 US$7,000
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報・注文方法はこちら
497 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。

日本語のページは自動翻訳を利用し作成しています。


 

サマリー

電気モーターはまさに電気自動車(EV)の原動力である。バッテリーとパワーエレクトロニクスに加え、電気モーターはドライブトレインの重要なコンポーネントです。電気モーターはもともと1800年代に開発されたにもかかわらず、新しい設計、パワーとトルク密度の向上、使用材料に関するより多くの配慮によって、市場は今日でも進化し続けている。これらは単なる漸進的な改善でもなく、軸流モーターやさまざまなOEMがレアアースを完全に排除するなどの開発が行われています。
 
IDTechExの最新レポート「EVモーター2025-2035」は、EV用モーター市場におけるOEMの戦略、トレンド、新興技術について詳述しています。複数の地域で2015年から2023年の間に販売された500を超えるEVモデルバリエーションの広範なモデルデータベースは、モーターのタイプ、性能、熱管理、市場シェアのきめ細かな市場分析に役立ちます。自動車、二輪車、三輪車、マイクロカー、小型商用車(バン)、トラック、バスについて、主要OEMの技術と戦略を、いくつかのユースケースと複数のモーターユニットのベンチマークとともに考察しています。また、軸流モータやインホイールモータなど、2035年までの市場予測とともに新技術も取り上げている。モーター要件とユースケースは、性能特性が要求される初期段階の市場として、eVTOL(電動垂直離着陸)およびeCTOL(電動従来型離着陸)航空機について詳述されている。
 
IDTechExは、BEVと新興代替車のモーターの主要パラメータを分析する。
出典:電気自動車用モーター2025-2035
 
材料とレアアース
EVモーター市場にとって重要な検討事項は、磁性材料です。2015年から2023年にかけて、電気自動車市場における永久磁石(PM)モーターのシェアは常に75%以上を維持しています。レアアース磁石は、サプライチェーンが中国に制約されていることと、歴史的な価格変動のため、2024年も引き続き懸念材料となります。こうした懸念を回避するため、ルノーとBMWが巻線ローターモーターを採用し、アウディが誘導モーターを採用するなど、欧州の複数のOEMがマグネットフリーの設計を選択した。2023年、テスラは次世代モーターをレアアース不使用のPMマシンにすると発表し、フェライト磁石などの代替磁性材料とそれが大量採用にもたらす課題への注目がさらに高まった。磁石の価格は、2021年/2022年のピークを経て2023年に落ち着き、レアアースを使用しない設計はやや前景から遠ざかりましたが、継続的な変動とサプライチェーンを確保したいという願いから、引き続き注目されています。
 
本レポートでは、IDTechExが磁石を使用しないモーター設計、レアアース削減のルート、代替磁性材料のオプションについて分析しています。IDTechExは、PMモーターがモーターの支配的な形態であり続ける(特にEV市場における中国の優位性)と予測していますが、モーターあたりのレアアースはさらに削減され、代替磁性材料は市場でさらに進歩するでしょう。
 
自動車市場の大半は永久磁石モーターを使用している。
出典:電気自動車用モーター 2025-2035
 
新たな選択肢としての軸流モーターとインホイールモーター
EVに搭載される従来のラジアル磁束モーターに加え、市場導入の初期段階にありながら多くの関心を集めている2つの新たな選択肢、すなわち軸流モーターとインホイールモーターがある。
 
軸流モータは磁束が回転軸に平行である(ラジアル磁束モータは垂直)。軸流モーターの利点には、出力とトルク密度の向上、さまざまなシナリオに組み込むのに理想的なパンケーキ型フォームファクターなどがある。以前は採用が進まなかったにもかかわらず、この技術は市場統合へと発展した。ダイムラーは主要企業のYASAを買収し、同社のモーターを次期AMG電動プラットフォームに採用し、ルノーはWHYLOTと提携し、2025年からハイブリッド車に軸流モータを採用する。
 
インホイールモーターは、数量限定のロードスタウントラックなど、一部のオンロード車に採用された。しかし、これまでのところ、インホイールモーターを使用すると表明されたほとんどの自動車プロジェクトは資金難に陥っている。しかし、東風が2023年にProteanDrive(インホイールモーター・プラットフォーム)を搭載した初のホモロゲーション乗用車を実証したProteanによって、重要な進展が見られた。
 
IDTechExは、特定の車両カテゴリーでは軸流モーターとインホイールモーターの需要が大幅に増加すると予測しているが、近い将来、従来の車載用ラジアルフラックスモーターに取って代わるとは予測していない。本レポートでは、新興モーター技術の性能と市場分析を行い、プレーヤー、採用、10年間の市場予測を掲載しています。
 
主要な側面
  • 自動車、二輪車、三輪車、マイクロカー、小型商用車(バン)、トラック、バス、eVTOL、eCTOLを含むBEV、PHEV、HEVの電気モーター市場の分析:
  • 異なるモータータイプ/トポロジーのベンチマーク
  • OEM戦略
  • EV業界の動向と電気モーターへの影響
  • モーター設計のトレンド
  • 新しいモーター技術とベンチマーク:アキシャルフラックス、インホイール、スイッチドリラクタンス
  • 材料の利用:磁石(レアアースを含む)と巻線(丸型またはヘアピン型)
  • 電気モーターの熱管理
  • EVのユースケースとベンチマーク
  • OEMとティア1の供給関係
  • インタビューを含む企業プロフィール
 
10年間の市場予測と分析:
  • 自動車用電動モーター予測 2015-2035年(地域別): 中国, 欧州, 米国, その他の地域 (台数, kW)
  • 自動車用電動モーター予測 2015-2035(ドライブトレイン):中国、欧州、米国、その他(台数、kW): BEV、PHEV、HEV(台数、kW)
  • 2015~2035年の自動車用電動機予測(モータータイプ):交流誘導モーター(ACIM)、永久磁石(PM)、巻線ローター同期モーター(WRSM)、永久磁石レアアースフリー、その他レアアースフリー、軸流磁束(台)
  • 自動車用電気モーターの金額予測(ドライブトレイン): BEV、PHEV、HEV(米ドル)
  • マイクロEV用モーター予測:二輪車(4kW未満および4kW超)、三輪車(4kW未満および4kW超)、マイクロカー(単位:kW、米ドル)
  • 電動小型商用車(バン)モーター予測: BEVとPHEV(台数、kW、米ドル)
  • 電気トラック用モーター予測:中型および大型BEVおよびPHEV(台数、kW、USドル)
  • 電気バス用モーターの予測:BEVおよびPHEV(台数、kWおよび米ドル BEVとPHEVの予測(台数、kW、USドル)
  • 自動車用HEVモーターの予測 中国、欧州、米国、日本、韓国、その他の地域(台数、kW)
  • 車載用軸流モーターの予測(台)
  • インホイールモーターの予測(台)
  • モーターマグネット用材料の元素別予測(トン)
  • アルミニウム、銅、鉄の予測(トン)

 



 

ページTOPに戻る


 

Summary

この調査レポートは、EV用モーター市場におけるOEMの戦略、トレンド、新興技術について詳細に調査・分析しています。
 
主な掲載内容(目次より抜粋)
  • 電気トラック
  • 電気バス
  • ヘブドライブ技術
  • 電気航空
  • 新興モーター技術
  • 電気モーター用材料
  • 電気モーターの熱管理
  • EVモーター
 
Report Summmary
Electric motors truly are the driving force behind electric vehicles (EVs). In addition to the batteries and power electronics, the electric motor is a critical component within the drivetrain. Despite electric traction motors originally being developed in the 1800s, the market is still evolving today with new designs, improving power and torque density and more considerations around the materials used. These aren't just incremental improvements either, with developments such as axial flux motors and various OEMs eliminating rare-earths altogether.
 
The latest report from IDTechEx on Electric Vehicle Motors 2025-2035 details OEM strategies, trends, and emerging technologies within the motor market for EVs. An extensive model database of over 500 EV model variants sold between 2015-2023 in several geographic regions aids in a granular market analysis of motor type, performance, thermal management, and market shares. Technologies and strategies of major OEMs are considered for cars, two-wheelers, three-wheelers, microcars, light commercial vehicles (vans), trucks, and buses along with several use-cases and benchmarking of several motor units. Emerging technologies are also addressed with market forecasts through to 2035 such as axial flux and in-wheel motors. Motor requirements and use cases are detailed for eVTOL (electric vertical take-off and landing) and eCTOL (electric conventional take-off and landing) aircraft as a much earlier stage market, with demanding performance characteristics.
 
IDTechEx analyses key parameters of motors in BEVs and emerging alternatives. Source: Electric Motors for Electric Vehicles 2025-2035
 
Materials and Rare-earths
A key consideration for the EV motor market is that of magnetic materials. From 2015-2023 the share of permanent magnet (PM) motors in the electric car market remained consistently above 75%. Rare-earth magnets continue to be a concern in 2024 due to their supply chain being constrained to China and the historic price volatility. To avoid these concerns, several European OEMs have opted for magnet free designs including Renault and BMWs adoption of wound rotor motors and Audi's use of induction motors. In 2023, Tesla announced its next generation motor would be a PM machine without rare-earths, further bringing the focus to alternative magnetic materials such as ferrite magnets and the challenges they pose to mass adoption. Magnet prices settled in 2023 after a peak in 2021/2022 pushing rare earth free designs somewhat away from the fore, but the continued volatility and the wish to secure supply chains keep them as a focus point.
 
In this report, IDTechEx provides an analysis of magnet free motor designs, routes to rare-earth reduction, and options for alternative magnetic materials. IDTechEx predicts that PM motors will remain the dominant form of motor (especially with China's dominance in the EV market), but there will be further reductions in rare-earths per motor and alternative magnetic materials making greater progress in the market.
 
The vast majority of the car market is using permanent magnet motors. Source: Electric Motors for Electric Vehicles 2025-2035
 
Axial Flux and In-wheel Motors as Emerging Options
In addition to the traditional on-board radial flux motors in EVs, there are two emerging alternatives that have gained a lot of interest but are at early stages of market adoption, namely axial flux and in-wheel motors.
 
In axial flux motors the magnetic flux is parallel to the axis of rotation (compared to perpendicular in radial flux machines). The benefits of axial flux motors include increased power and torque density and a pancake form factor ideal for integration in various scenarios. Despite the previous lack of adoption, the technology has evolved to market integration. Daimler acquired key players YASA to use its motors in the upcoming AMG electric platform and Renault has partnered with WHYLOT to use axial flux motors in its hybrids starting in 2025.
 
In-wheel motors made it into some on-road vehicles such as a limited quantity of Lordstown trucks. However, most automotive projects stated to use in-wheel motors so far have run into financial troubles. However key progress was made by Protean where Dongfeng demonstrated the first homologated passenger car with ProteanDrive (in-wheel motor platform) in 2023, and is following this with fleet testing.
 
IDTechEx expects a large increase in demand for axial flux and in-wheel motors for certain vehicle categories, but does not predict they will displace the traditional on-board radial flux machines in the near future. This report carries out performance and market analysis of emerging motor technologies with players, adoption, and 10 year market forecasts.
 
Key Aspects
Analysis of the electric motor markets in BEVs, PHEVs and HEVs across cars, two-wheelers, three-wheelers, microcars, light commercial vehicles (vans), trucks, buses, eVTOL, and eCTOL including:
  • Benchmarking different motor types/topologies
  • OEM strategies
  • EV industry trends and the impact on electric motors
  • Trends in motor design
  • Emerging motor technologies and benchmarking: axial flux, in-wheel, and switched reluctance
  • Materials utilization: magnets (including rare earths) and windings (round or hairpin)
  • Thermal management of electric motors
  • EV use-cases and benchmarking
  • Supply relationships between OEMs and tier 1s
  • Company profiles including interviews
 
10 Year Market Forecasts & Analysis:
  • Automotive electric motor forecast 2015-2035 (regional): China, Europe, US and rest of world (units, kW)
  • Automotive electric motor forecast 2015-2035 (drivetrain): BEV, PHEV and HEV (units, kW)
  • Automotive electric motor forecast 2015-2035 (motor type): alternating current induction motor (ACIM), permanent magnet (PM), wound rotor synchronous motor (WRSM), permanent magnet rare earth free, other rare earth free, axial flux (units)
  • Automotive electric motor value forecast (drivetrain): BEV, PHEV and HEV (US$)
  • Micro-EV motor forecast: two-wheelers (<4 kW and >4 kW), three-wheelers (<4 kW and >4 kW), microcars (units, kW, and US$)
  • Electric light commercial vehicle (van) motor forecast: BEV & PHEV (units, kW, and US$)
  • Electric truck motor forecast: medium- and heavy-duty BEV & PHEV (units, kW, and US$)
  • Electric bus motor forecast: BEV & PHEV (units, kW, and US$)
  • Automotive HEV motor forecast: China, Europe, US, Japan, South Korea and rest of world (units, kW)
  • Automotive axial flux motor forecast (units)
  • In-wheel motors forecast (units)
  • Materials for motor magnets forecast split into elements (tonnes)
  • Forecast for aluminum, copper, and steel (tonnes)


ページTOPに戻る


Table of Contents

1. EXECUTIVE SUMMARY
1.1. Summary of Traction Motor Types
1.2. Average Motor Power 2023 by Vehicle Category (kW)
1.3. Convergence on PM Motors by Major Automakers
1.4. Motor Type Market Share Forecast
1.5. Commentary on Electric Traction Motor Trends in Cars
1.6. Automotive Electric Motor Forecast 2015-2035 (units, regional)
1.7. Automotive Electric Motor Forecast 2015-2035 (units, drivetrain)
1.8. Automotive Electric Motor Forecast 2015-2035 (units, motor type)
1.9. OEM & Tier 1 Approaches to Eliminate Rare Earths
1.10. Materials in Electric Motors Forecast 2021-2035 (kg)
1.11. The Many Types of Square Winding
1.12. Hairpin Winding Regional Market Shares
1.13. Micro EV Types
1.14. Micro EV Characteristics
1.15. Average Motor Power of Microcars
1.16. Micro-EV Motor Forecast 2021-2035 (units, vehicle type)
1.17. Motors Used in eLCVs
1.18. LCV Electric Motor Forecast 2021-2035 (units, drivetrain)
1.19. Medium Duty Truck Models Motor Power
1.20. Heavy Duty Truck Models Motor Power
1.21. Truck Electric Motor Forecast 2021-2035 (units, drivetrain & category)
1.22. Bus Categories and Electrification
1.23. Motor Mounting - Central or Axle Mounted
1.24. Traction Motors of Choice for Electric Buses
1.25. Bus Electric Motor Forecast 2021-2035 (units, drivetrain)
1.26. eVTOL Motor Sizing
1.27. Overview of Plane Types Energy and Power Requirements
1.28. Player Benchmark of Axial Flux Motors Power and Torque Density
1.29. Automotive Axial Flux Motor Forecast 2021-2035 (units)
1.30. In-wheel Motors Production Forecast 2021-2035 (units)
1.31. Motor Type Power Density Benchmark
1.32. OEM and Tier 1 Supply Relationships (1)
1.33. OEM and Tier 1 Supply Relationships (2)
1.34. Commercial Vehicle OEM and Tier 1 Supply Relationships (1)
1.35. Commercial Vehicle OEM and Tier 1 Supply Relationships (2)
1.36. BEV Power Density Benchmarking
1.37. Commercial Vehicle Motors Power Density Benchmarking
1.38. Light Duty Vehicle Motors Power Density Benchmarking
1.39. eAxle for Commercial Vehicle Benchmarking
1.40. Total Motor Market Size Forecast by Vehicle and Drivetrain 2021-2035 (US$ billions)
1.41. Access More with an IDTechEx Subscription
2. INTRODUCTION
2.1. Electric Vehicles: Basic Principle
2.2. Electric Vehicle Definitions
2.3. Drivetrain Specifications
2.4. Parallel and Series Hybrids: Explained
2.5. Electric Motors
3. TYPES OF ELECTRIC TRACTION MOTOR AND BENCHMARKING
3.1.1. Electric Traction Motor Types
3.1.2. Summary of Traction Motor Types
3.1.3. Benchmarking Electric Traction Motors
3.1.4. Peak vs Continuous Properties
3.1.5. Efficiency
3.1.6. Brushless DC Motors (BLDC): Working Principle
3.1.7. BLDC Motors: Advantages, Disadvantages
3.1.8. BLDC Motors: Benchmarking Scores
3.1.9. Permanent Magnet Synchronous Motors (PMSM): Working Principle
3.1.10. PMSM: Advantages, Disadvantages
3.1.11. PMSM: Benchmarking Scores
3.1.12. Differences Between PMSM and BLDC
3.1.13. Wound Rotor Synchronous Motor (WRSM): Working Principle
3.1.14. Renault's Magnet Free Motor
3.1.15. Rotor Power Transfer: Brushes vs Wireless
3.1.16. WRSM Motors: Benchmarking Scores
3.1.17. WRSM: Advantages, Disadvantages
3.1.18. AC Induction Motors (ACIM): Working Principle
3.1.19. AC Induction Motor (ACIM)
3.1.20. AC Induction Motors: Benchmarking Scores
3.1.21. AC Induction Motor: Advantages, Disadvantages
3.1.22. Reluctance Motors
3.1.23. Reluctance Motor: Working Principle
3.1.24. Switched Reluctance Motor (SRM)
3.1.25. Switched Reluctance Motors: Benchmarking Scores
3.1.26. Permanent Magnet Assisted Reluctance (PMAR)
3.1.27. PMAR Motors: Benchmarking Scores
3.1.28. Contributions from Reluctance and Interaction Torque
3.1.29. Regeneration
3.2. Electric Traction Motors: Summary and Benchmarking Results
3.2.1. Comparison of Traction Motor Construction and Merits
3.2.2. Motor Efficiency Comparison
3.2.3. Benchmarking Electric Traction Motors
3.2.4. Multiple Motors: Explained
4. MOTOR MARKET IN ELECTRIC CARS
4.1. BEV and PHEV Motor Type Market Share by Region 2015-2023
4.2. Convergence on PM Motors by Major Automakers
4.3. Motor Type Market Share Forecast
4.4. Commentary on Electric Traction Motor Trends in Cars
4.5. Automotive Electric Motor Forecast 2015-2035 (units, regional)
4.6. Automotive Electric Motor Forecast 2015-2035 (units, drivetrain)
4.7. Automotive Electric Motor Forecast 2015-2035 (units, motor type)
4.8. Automotive Electric Motor Power Forecast 2015-2035 (kW, regional)
4.9. Automotive Electric Motor Power Forecast 2015-2035 (kW, drivetrain)
4.10. Automotive Electric Motor Value Forecast 2021-2035 (US$, drivetrain)
5. MICROMOBILITY
5.1. Introduction
5.2. Micro EV Types
5.3. Micro EV Characteristics
5.4. Comparison of Micro EV Segments
5.5. Asia Home to Major Electric Two-wheeler Markets
5.6. Electric Two-wheeler Classification
5.7. Electric Two-wheelers: Power Classes
5.8. Indian Electric Two-wheeler OEMs
5.9. E-motorcycle Benchmarking
5.10. Motor Technologies in Two-wheelers
5.11. The Role of Three-wheelers
5.12. Electric Three-wheeler Classification
5.13. China and India: Major Three-wheeler Markets
5.14. Examples of E3W Models in India
5.15. Examples of E3W Models in China
5.16. Three Wheelers Outside China and India
5.17. Microcars: The Goldilocks of Urban EVs
5.18. Examples of Microcars by Region
5.19. Average Motor Power of Microcars
5.20. Micromobility Motor Manufacturers
5.21. Micro-EV Motor Forecast 2021-2035 (units, vehicle type)
5.22. Micromobility Research
6. ELECTRIC LIGHT COMMERCIAL VEHICLES (ELCV)
6.1. Introduction to Electric LCVs
6.2. LCV Definition
6.3. Electric LCVs: Drivers and Barriers
6.4. Specifications of Popular Electric LCVs in Europe
6.5. Specifications of Popular Electric LCVs in China
6.6. Motors Used in eLCVs
6.7. Motor Number, Type and Power Trends: LCV
6.8. eLCV Average Motor Performance and Type
6.9. LCV Electric Motor Forecast 2021-2035 (units, drivetrain)
6.10. Light Commercial Vehicle Research
7. ELECTRIC TRUCKS
7.1. Trucks are Capital Goods
7.2. Zero Emission Trucks: Drivers and Barriers
7.3. Regional Model Availability 2021-2024
7.4. BEV and FCEV M&HD Trucks: Weight vs Motor Power
7.5. Medium Duty Truck Models Motor Power
7.6. Heavy Duty Truck Models Motor Power
7.7. Truck Motor Type Market Share and Power Output Requirements
7.8. Integrated e-Axle Space Advantage
7.9. Allison Transmission eGen Power e-Axles
7.10. BorgWarner
7.11. Dana E-Axles
7.12. Dana TM4
7.13. Danfoss Editron
7.14. Detroit eAxles
7.15. FPT Truck Motors
7.16. Accelera eAxles
7.17. Meritor 14Xe Electric Drivetrain
7.18. Volvo Driveline
7.19. ZF
7.20. Truck Electric Motor Forecast 2021-2035 (units, drivetrain & category)
7.21. Electric Truck Research
8. ELECTRIC BUSES
8.1. Bus Categories and Electrification
8.2. Overview of Bus Types and Specific Challenges to Electrification
8.3. Options for Reduced Emissions Buses
8.4. Electric Buses - a Global Outlook
8.5. Motor Mounting - Central or Axle Mounted
8.6. Electric Bus Motor Types
8.7. Motor Benchmarking and Metrics for Buses
8.8. Traction Motors of Choice for Electric Buses
8.9. Motor Suppliers - Overview
8.10. Convergence on PM
8.11. Motor OEM Supply Relationships
8.12. Dana TM4
8.13. Equipmake - Motors for Retrofitting
8.14. Siemens/Cummins ACCELERA
8.15. Traktionssysteme Austria (TSA)
8.16. Voith
8.17. Voith - Central Motors Only
8.18. ZF Group - AxTrax and CeTrax
8.19. ZF Group - New AxTrax and CeTrax Shift to PM Motors
8.20. Volvo Electric Buses
8.21. Bus Electric Motor Forecast 2021-2035 (units, drivetrain)
9. HEV DRIVE TECHNOLOGY
9.1. HEV Car Manufacturers
9.2. Hybrid Synergy Drive/ Toyota Hybrid System
9.3. Hybrid Synergy Drive/ Toyota Hybrid System
9.4. Honda
9.5. Honda's 2 Motor Hybrid System
9.6. Nissan Note e-POWER
9.7. Hyundai Sonata Hybrid
9.8. Toyota Prius Drive Motor: 2004-2010
9.9. Toyota Prius Drive Motor: 2004-2017
9.10. Comparison of Hybrid MGs
9.11. Global HEV Car Motor/Generator Trends
9.12. HEV Car MGs Trends and Assumptions
9.13. Global HEV Car MG Demand Forecast 2015-2035 (units, kW)
9.14. High Voltage Hybrid Electric Vehicle Research
10. ELECTRIC AVIATION
10.1. eVTOL Motor Requirements
10.1.1. eVTOL Motor / Powertrain Requirements
10.1.2. eVTOL Aircraft Motor Power Sizing
10.1.3. eVTOL Power Requirement: kW Estimate
10.1.4. eVTOL Power Requirement
10.1.5. eVTOL Power Requirement: kW Estimate
10.1.6. Electric Motors and Distributed Electric Propulsion
10.1.7. eVTOL Number of Electric Motors
10.1.8. Motor Sizing
10.2. eCTOL Motor Requirements
10.2.1. eCTOL Motor / Powertrain Requirements
10.2.2. Overview of Plane Types Energy and Power Requirements
10.2.3. Typical Airplane Engines
10.2.4. Airplane Engines Power and Weight
10.2.5. Turbofan Power Estimations
10.2.6. Electric Motors and Distributed Electric Propulsion
10.2.7. Challenges in Building a 100MW Electric Propulsion Unit
10.3. Electric Motors for Aviation: Players
10.3.1. Ascendance
10.3.2. Collins - Aerospace Suppliers Working on Motor Products
10.3.3. Duxion is Reinventing the Motor to Replace Turbofans
10.3.4. EMRAX
10.3.5. ePropelled
10.3.6. Evolito
10.3.7. H3X
10.3.8. MAGicALL
10.3.9. magniX
10.3.10. MGM COMPRO
10.3.11. Nidec Aerospace
10.3.12. Rolls-Royce / Siemens
10.3.13. Rolls-Royce / Siemens
10.3.14. SAFRAN
10.3.15. Wright Electric's High Power-to-Weight Motor
10.3.16. Other Player Examples
10.3.17. Power Density Comparison: Motors for Aviation
10.3.18. Torque Density Comparison: Motors for Aviation
10.3.19. eCTOL and eVTOL Research
11. EMERGING MOTOR TECHNOLOGIES
11.1. Axial Flux Motors
11.1.1. Radial Flux Motors
11.1.2. Axial Flux Motors
11.1.3. Radial Flux vs Axial Flux Motors
11.1.4. Yoked vs Yokeless Axial Flux
11.1.5. Challenges with Axial Flux Thermal Management
11.1.6. List of Axial Flux Motor Players
11.1.7. Beyond Motors
11.1.8. AVID Acquired by Turntide
11.1.9. EMRAX
11.1.10. Elemental Motors
11.1.11. Infinitum Electric: Printed PCB Stator
11.1.12. Lamborghini
11.1.13. Koenigsegg - raxial flux
11.1.14. Magnax
11.1.15. Magelec Propulsion
11.1.16. Saietta
11.1.17. Tresa Motors
11.1.18. WHYLOT
11.1.19. WHYLOT and Renault
11.1.20. YASA Axial Flux Motors
11.1.21. YASA and Koenigsegg
11.1.22. YASA and Ferrari
11.1.23. Lamborghini 634 - V8 with Axial Flux
11.1.24. Daimler Acquires YASA
11.1.25. Mercedes Vision One Eleven Concept
11.1.26. Commercial Axial Flux Motors Power and Torque Density Benchmark
11.1.27. Player Benchmark of Axial Flux Motors Power and Torque Density
11.1.28. Automotive Axial Flux Motor Forecast 2021-2035 (units)
11.2. In-wheel Motors
11.2.1. In-wheel Motors
11.2.2. Risks and Opportunities for In-wheel Motors
11.2.3. Risks and Opportunities for In-wheel Motors
11.2.4. Risks and Opportunities for In-wheel Motors
11.2.5. DeepDrive
11.2.6. Elaphe
11.2.7. Ferrari
11.2.8. Gem Motors
11.2.9. Hitachi
11.2.10. Hyundai Mobis
11.2.11. Nidec
11.2.12. Protean Electric
11.2.13. REE Automotive
11.2.14. Schaeffler
11.2.15. Examples of Vehicles with In-wheel Motors
11.2.16. Axial Flux for In-wheel Motors
11.2.17. In-wheel Motors Production Forecast 2021-2035 (units)
11.3. Axial Flux and In-wheel Motors Benchmarking Against BEV Motors
11.3.1. Motor Type Power Density Benchmark
11.3.2. Motor Type Torque Density Benchmark
11.3.3. Average and Range of Power and Torque Density by Motor Type
11.4. Overcoming Issues with Switched Reluctance Motors
11.4.1. Switched Reluctance Motor (SRM)
11.4.2. No Permanent Magnets for SRMs
11.4.3. Advanced Electric Machines (AEM): Commercial Vehicles
11.4.4. AEM and Bentley
11.4.5. Enedym
11.4.6. RETORQ Motors
11.4.7. Punch Powertrain
11.4.8. Turntide Technologies
11.4.9. Switched Reluctance Players for EVs
12. MATERIALS FOR ELECTRIC MOTORS
12.1.1. Which Materials are Required for Electric Motors?
12.2. Materials for Permanent Magnets
12.2.1. Magnetic Material Distribution in Rotors
12.2.2. ID4 vs Leaf vs Model 3 Rotors
12.2.3. Magnet Composition for Motors
12.2.4. Mining of Rare-Earth Metals
12.2.5. China's Control of Rare-Earths
12.2.6. Volatility of EV Motor Materials
12.2.7. The Market Drive to Eliminate Rare Earths
12.3. Rare Earth Reduction and Elimination
12.3.1. Europe's Move to Magnet Free Designs
12.3.2. Key Magnetic Properties and Challenges with Rare Earth Free Magnets
12.3.3. Tesla's Next Generation Motor
12.3.4. How Tesla Could Eliminate Rare-earths (1)
12.3.5. How Tesla Could Eliminate Rare-earths (2)
12.3.6. How Tesla Could Eliminate Rare-earths (3)
12.3.7. Rare Earth Reduction Progress in Japan
12.3.8. Alternative Magnetic Materials
12.3.9. Alternative Magnetic Materials
12.3.10. Toyota's Neodymium Reduced Magnet
12.3.11. Niron Magnetics
12.3.12. Niron Funding and Partnerships
12.3.13. PASSENGER Rare Earth Free Magnets
12.3.14. Ferrite Performance vs Neodymium in Motors
12.3.15. Ferrite Performance vs Neodymium
12.3.16. Recycling Rare Earths
12.3.17. OEM & Tier 1 Approaches to Eliminate Rare Earths
12.4. Rotor and Stator Windings
12.4.1. Aluminium vs Copper in Rotors
12.4.2. Round Wire vs Hairpins for Copper in Stators
12.4.3. The Many Types of Square Winding
12.4.4. Round Wire vs Hairpin vs Continuous Winding
12.4.5. MG Motors (SAIC)
12.4.6. VW's MEB
12.4.7. Tesla
12.4.8. Round vs Hairpin Windings: OEMs
12.4.9. Hairpin Winding Regional Market Shares
12.4.10. A New Winding Format?
12.4.11. Aluminum vs Copper Windings
12.4.12. Compressed Aluminum Windings
12.4.13. Aluminum Windings: Players
12.5. Motor Materials Environmental Impact and Forecasts
12.5.1. Environmental Impact Introduction
12.5.2. Environmental Impact of Materials
12.5.3. Material Intensity for BEV Motors
12.5.4. Environmental Impact of Several BEV Motors
12.5.5. Materials in Rare Earth Motor Magnets Forecast 2021-2035 (kg)
12.5.6. Rare Earth vs Rare Earth Free Magnet Material Forecast 2021-2035 (kg)
12.5.7. Materials in Electric Motors Forecast 2021-2035 (kg)
13. THERMAL MANAGEMENT OF ELECTRIC MOTORS
13.1.1. Cooling Electric Motors
13.2. Motor Cooling Strategies
13.2.1. Air Cooling
13.2.2. Water-glycol Cooling
13.2.3. Oil Cooling
13.2.4. Electric Motor Thermal Management Overview
13.2.5. Motor Cooling Strategy by Power
13.2.6. Cooling Strategy by Motor Type
13.2.7. Cooling Technology: OEM strategies
13.2.8. Motor Cooling Strategy by Region (2015-2023)
13.2.9. Motor Cooling Strategy Market Share (2015-2023)
13.2.10. Automotive Motor Cooling Strategy Forecast 2015-2035 (units)
13.2.11. Alternate Cooling Structures
13.2.12. Refrigerant Cooling
13.2.13. Immersion Cooling
13.2.14. Phase Change Materials
13.2.15. Reducing Heavy Rare Earths Through Thermal Management
13.3. Motor Insulation and Encapsulation
13.3.1. Impregnation and Encapsulation
13.3.2. Potting and Encapsulation: Players
13.3.3. Axalta - Motor Insulation
13.3.4. Elantas - Insulation Systems for 800V Motors
13.3.5. Insulating Hairpin Windings
13.4. PEEK Motor Insulation
13.4.1. Bekaert - PEEK Insulation
13.4.2. Eaton - Nanocomposite PEEK Insulation
13.4.3. Solvay - PEEK Insulation
13.4.4. Victrex - PEEK Motor Insulation
13.4.5. When Should PEEK be Used?
14. EV MOTORS: OEM USE-CASES AND SUPPLY PARTNERSHIPS
14.1.1. OEM and Tier 1 Supply Relationships (1)
14.1.2. OEM and Tier 1 Supply Relationships (2)
14.1.3. OEMs Moving to In-house Motor Development
14.2. Motor Examples
14.2.1. Audi e-tron
14.2.2. Audi e-tron
14.2.3. Audi Q4 e-tron
14.2.4. Audi Premium Platform Electric (PPE)
14.2.5. BMW i3 2016
14.2.6. BMW 5th Gen Drive (Jaguar)
14.2.7. BYD e-Platform 3.0
14.2.8. Chevrolet Bolt Onwards (LG)
14.2.9. Equipmake
14.2.10. Ford Mustang Mach-E (BorgWarner and Magna)
14.2.11. GM Ultium Drive
14.2.12. Huawei
14.2.13. Hyundai E-GMP (BorgWarner)
14.2.14. Jaguar I-PACE (AAM)
14.2.15. Lordstown Motors (Elaphe)
14.2.16. Lucid Air
14.2.17. IRP Systems
14.2.18. Magna's Latest eDrive
14.2.19. Mercedes EQ
14.2.20. Nidec - Gen.2 drive
14.2.21. Nissan Leaf
14.2.22. Porsche Taycan
14.2.23. Ricardo Rare Earth Free Drive Unit
14.2.24. Rivian
14.2.25. Rivian In-house Motors
14.2.26. SAIC - Oil cooling system
14.2.27. Stellantis Shared Platform (Npe)
14.2.28. Tesla Induction Motor
14.2.29. Tesla PM Motor
14.2.30. Tesla's Carbon Wrapped Motor
14.2.31. Tesla Cybertruck
14.2.32. Toyota Prius 2004 to 2010
14.2.33. VW ID3/ID4
14.2.34. Zero Z-Force Powertrain
14.2.35. ZF
14.3. Tier 1 Wound Rotor Synchronous Motors/Externally Excited Synchronous Motors
14.3.1. BorgWarner's EESM Development
14.3.2. MAHLE
14.3.3. Schaeffler Wound Rotor Design
14.3.4. Vitesco
14.3.5. ZF
14.4. Supply Relationships
14.4.1. Commercial Vehicle OEM and Tier 1 Supply Relationships (1)
14.4.2. Commercial Vehicle OEM and Tier 1 Supply Relationships (2)
14.4.3. Allison Transmission - Anadolu Isuzu
14.4.4. Aisin Seiki, DENSO and Toyota Motor form BluE Nexus
14.4.5. BorgWarner Partnerships and Acquisitions
14.4.6. Bosch
14.4.7. Continental
14.4.8. Dana Supply Relationships and Announcements
14.4.9. GKN Automotive
14.4.10. Lucid Supply Partnerships
14.4.11. Hitachi
14.4.12. LG Electronics and Magna
14.4.13. Nidec
14.4.14. Mavel
14.4.15. Schaeffler
14.4.16. Valeo
14.4.17. Vitesco Technologies
14.4.18. Vitesco and Schaeffler Merger
14.4.19. Yamaha - hypercar electric motor
14.4.20. ZF
15. EV MOTORS: OEM BENCHMARKING
15.1. Automotive
15.1.1. BEV Power Density Benchmarking
15.1.2. BEV Torque Density Benchmarking
15.1.3. BEV Power and Torque Density Benchmark
15.1.4. EV Motor Specification Summary
15.2. Commercial Vehicles
15.2.1. Commercial Vehicle Motors Power Density Benchmarking
15.2.2. Commercial Vehicle Motors Torque Density Benchmarking
15.2.3. Commercial Vehicle Motors Power and Torque Density Benchmark
15.2.4. Commercial Vehicle Motor Specification Summary
15.3. Light Duty
15.3.1. Light Duty Vehicle Motors Power Density Benchmarking
15.3.2. Light Duty Vehicle Motors Torque Density Benchmarking
15.3.3. Light Duty Vehicle Motor Specification Summary
15.4. eAxles for Commercial Vehicles
15.4.1. eAxle for Commercial Vehicle Benchmarking
15.4.2. eAxle Specification Summary
16. FORECASTS AND ASSUMPTIONS
16.1.1. Forecast Methodology & Assumptions
16.1.2. Motor Price Forecast and Assumptions
16.1.3. Average Motor Power 2023 by Vehicle Category (kW)
16.1.4. Motor per Vehicle and kW per Vehicle Assumptions
16.1.5. Automotive Electric Motor Forecast 2015-2035 (units, regional)
16.1.6. Automotive Electric Motor Forecast 2015-2035 (units, drivetrain)
16.1.7. Automotive Electric Motor Forecast 2015-2035 (units, motor type)
16.1.8. Automotive Electric Motor Power Forecast 2015-2035 (kW, regional)
16.1.9. Automotive Electric Motor Power Forecast 2015-2035 (kW, drivetrain)
16.1.10. Automotive Electric Motor Value Forecast 2021-2035 (US$, drivetrain)
16.1.11. Micro-EV Motor Forecast 2021-2035 (units, vehicle type)
16.1.12. LCV Electric Motor Forecast 2021-2035 (units, drivetrain)
16.1.13. Truck Electric Motor Forecast 2021-2035 (units, drivetrain & category)
16.1.14. Bus Electric Motor Forecast 2021-2035 (units, drivetrain)
16.1.15. Global HEV Car MG Demand Forecast 2015-2035 (units, kW)
16.1.16. Automotive Axial Flux Motor Forecast 2021-2035 (units)
16.1.17. In-wheel Motors Production Forecast 2021-2035 (units)
16.1.18. Materials in Rare Earth Motor Magnets Forecast 2021-2035 (kg)
16.1.19. Rare Earth vs Rare Earth Free Magnet Material Forecast 2021-2035 (kg)
16.1.20. Materials in Electric Motors Forecast 2021-2035 (kg)
16.1.21. Automotive Motor Cooling Strategy Forecast 2015-2035 (units)
16.1.22. Total Motors Forecast by Vehicle and Drivetrain 2021-2035 (units)
16.1.23. Total Motor Power Forecast by Vehicle and Drivetrain 2021-2035 (kW)
16.1.24. Total Motor Market Size Forecast by Vehicle and Drivetrain 2021-2035 (US$ billions)
17. COMPANY PROFILES
17.1. Advanced Electric Machines: Rare Earth Free Motors
17.2. AVID Technology
17.3. Axalta Coating Systems: Electric Motor Insulation
17.4. Beyond Motors: Axial Flux Motors
17.5. DELO: Adhesives for Automotive Components
17.6. Eaton Research Laboratories: Electric Motor Insulation
17.7. Elaphe: In-wheel Motors to Increase Drive Cycle Efficiency
17.8. ePropelled: Dynamic Torque-switching Electric Motor
17.9. Equipmake: Electric Motors and Power Electronics
17.10. EVR Motors
17.11. Infinitum Electric: PCB Stator Axial Flux Motor
17.12. Magnax
17.13. Monumo: Artificial Intelligence for Motor Development
17.14. Niron Magnetics: Rare Earth Free Permanent Magnets
17.15. Protean Electric
17.16. RETORQ Motors
17.17. Schaeffler: Magnet Free Motors
17.18. Ultimate Transmissions: How Tesla Could Avoid Rare-Earth Magnets
17.19. Ultimate Transmissions: Thermal Management of Electric Motors
17.20. Victrex

 

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野の最新刊レポート

  • 本レポートと同分野の最新刊レポートはありません。

よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/10/03 10:28

148.12 円

163.91 円

199.10 円

ページTOPに戻る