世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

2035年までの因果AI市場:提供タイプ別、展開モード別、サービスタイプ別、分析タイプ別、技術タイプ別、コンポーネントタイプ別、応用分野別、機能タイプ別、産業分野別、企業規模別、主要地域別の分布:業界動向と世界予測

2035年までの因果AI市場:提供タイプ別、展開モード別、サービスタイプ別、分析タイプ別、技術タイプ別、コンポーネントタイプ別、応用分野別、機能タイプ別、産業分野別、企業規模別、主要地域別の分布:業界動向と世界予測


Causal AI Market Till 2035: Distribution by Type of Offering, Type of Deployment Mode, Type of Services, Type of Analytics, Type of Technology, Type of Component, Areas of Application, Type of Functionality, Type of Industry Vertical, Company Size and Key Geographical Regions: Industry Trends and Global Forecasts

因果AI市場の概要 Roots Analysisによると、因果関係AIの世界市場規模は、現在の6,337万米ドルから2035年までに16億2,843万米ドルまで、2035年までの予測期間中に38.35%のCAGRで成長すると予測されている。 ... もっと見る

 

 

出版社 出版年月 電子版価格 納期 ページ数 言語
Roots Analysis
ルーツアナリシス
2025年8月22日 US$3,499
シングルユーザライセンス
ライセンス・価格情報
注文方法はこちら
通常3-4営業日。医療・医薬以外のレポートは10営業日 203 英語

 

サマリー

因果AI市場の概要
Roots Analysisによると、因果関係AIの世界市場規模は、現在の6,337万米ドルから2035年までに16億2,843万米ドルまで、2035年までの予測期間中に38.35%のCAGRで成長すると予測されている。



因果関係AI市場の機会は、以下のセグメントに分布している:

提供タイプ
- サービス
- ソフトウェア

導入形態
- クラウド
- ハイブリッド
- オンプレミス

サービスの種類
- コンサルティング
- 導入と統合
- サポートとメンテナンス
- トレーニング

アナリティクスの種類
- 記述的分析
- 予測分析
- プリスクリプティブ・アナリティクス

テクノロジーの種類
- コンピュータビジョン
- ディープラーニング
- 機械学習
- 自然言語処理

コンポーネントの種類
- アルゴリズム
- フレームワーク
- ライブラリ

応用分野
- 顧客経験管理
- 不正検知
- 医療診断
- マーケティング最適化
- 予知保全
- リスク管理
- サプライチェーン最適化

機能の種類
- 因果関係の発見
- 因果推論
- 反事実分析

業種
- BFSI
- 金融サービス
- ヘルスケア
- 製造業
- 小売
- 運輸・物流

企業規模
- 大企業
- 中小企業

地域
- 北米
- 米国
- カナダ
- メキシコ
- その他の北米諸国
- ヨーロッパ
- オーストリア
- ベルギー
- デンマーク
- フランス
- ドイツ
- アイルランド
- イタリア
- オランダ
- ノルウェー
- ロシア
- スペイン
- スウェーデン
- スイス
- 英国
- その他のヨーロッパ諸国
- アジア
- 中国
- インド
- 日本
- シンガポール
- 韓国
- その他のアジア諸国
- ラテンアメリカ
- ブラジル
- チリ
- コロンビア
- ベネズエラ
- その他のラテンアメリカ諸国
- 中東・北アフリカ
- エジプト
- イラン
- イラク
- イスラエル
- クウェート
- サウジアラビア
- アラブ首長国連邦
- その他のMENA諸国
- その他の国
- オーストラリア
- ニュージーランド
- その他の国

因果AI市場:成長とトレンド
因果AIは、データセット内の因果関係の検出と適用に焦点を当てた人工知能と機械学習の分野における重要なブレークスルーを意味する。パターンを認識し予測を行うために主に相関ベースの技術に依存する従来のAIモデルとは対照的に、因果AIは基本的な因果関係のメカニズムを理解することが重要な状況に取り組む。データから因果関係を明らかにすることを専門とする統計学的・哲学的分野である因果推論の原理を取り入れることで、因果AIはAI技術の分析能力を向上させる。

因果関係AIに対する需要は、様々な要因によってかなりの高まりを見せている。さらに、自然言語での会話が可能なバーチャルアシスタントやチャットボットの利用が増加しており、因果関係AIアプリケーションの魅力が高まっている。さらに、ハードウェア、クラウド・コンピューティング、データ・ストレージに関連するコストの低下により、AI技術はより広範な個人や組織が利用しやすくなっている。特筆すべきは、この経済的なアクセス可能性が、因果関係AIソリューションの開発と統合を促進し、これらのイノベーションを日常的なユーザーに近づけることで、予測期間中、この市場の成長を促進している。

因果AI市場:主要セグメント

提供タイプ別市場シェア
提供形態に基づき、世界の因果AI市場はサービスとソフトウェアに区分される。当社の推計によると、現在、サービス分野が市場の大半のシェアを占めている。これは、組織が因果関係AIソリューションを効果的に導入することを目指しているため、コンサルティング、統合、継続的サポートに対する需要が高まっていることに起因している。しかし、ソフトウェアセグメントは、予測期間中に比較的高いCAGRで成長すると予測されている。

導入形態別市場シェア
展開モードのタイプに基づき、因果AI市場はクラウド、ハイブリッド、オンプレミスに区分される。当社の推計によると、現在、クラウドセグメントが市場の大半を占めている。さらに、このセグメントは予測期間中に高いCAGRで成長すると予想されている。これは、クラウドプラットフォームが提供するスケーラビリティ、アクセシビリティ、オンプレミスのソリューションに比べて初期費用が抑えられるなどの利点によるものである。
また、クラウド技術の導入が進んでいることと、さまざまな分野で高度な分析能力に対する需要が高まっていることも、市場の成長を後押ししている。さらに、クラウドベースのソリューションにより、企業は需要に応じてリソースを迅速に変更することができるため、かなりの計算能力を必要とするアプリケーションには特に有利である。

サービスタイプ別市場シェア
サービスの種類に基づき、因果AI市場はコンサルティング、デプロイメント&インテグレーション、サポート&メンテナンス、トレーニングに区分される。当社の推計によると、現在、コンサルティング分野が市場の大半のシェアを占めている。これは、コンサルティングが、組織が因果関係AI技術を実装し、最大限に活用するのを支援する上で重要な役割を果たしていることに起因している。コンサルティング・サービスは、意思決定プロセスを強化し、業務効率を改善するために因果AIを適用する方法を理解する上で企業を支援する。

しかし、サポートおよびメンテナンス分野は、予測期間中、相対的に高いCAGRで成長すると予測されている。この成長は、組織が因果AIソリューションを採用し、その実装を最適化し、既存システムとの統合を成功させるための支援を求めるにつれて、継続的なサポートとトレーニングの必要性が高まっていることが背景にある。

アナリティクスのタイプ別市場シェア
アナリティクスの種類に基づき、因果AI市場は記述的アナリティクス、予測的アナリティクス、処方的アナリティクスに区分される。当社の推計によると、現在、予測アナリティクス分野が市場の大半のシェアを占めている。これは、過去のデータや傾向に基づいて結果を予測するために組織が幅広く採用し、さまざまな業界の意思決定に不可欠なリソースとなっていることに起因している。

また、予測期間中、処方的アナリティクス分野のCAGRが最も高くなると予測されている。これは、結果を予測するだけでなく、意図した結果を達成するための行動を提案する機能によるものである。この機能は、業務と戦略の強化を目指す企業にとってますます重要になっている。

技術タイプ別市場シェア
技術の種類に基づき、因果AI市場はコンピュータビジョン、ディープラーニング、機械学習、自然言語処理に区分される。当社の推計によると、現在、機械学習分野が市場の大半のシェアを占めている。これは、システムがデータから学習し、因果関係を正確に識別することを可能にする、様々な因果AIアプリケーションの基盤を確立する能力に起因している。

さらに、自然言語処理(NLP)分野は、予測期間中に最も高いCAGRを経験すると予測されている。これは、人間の言語を理解・解釈できるAIシステムに対する需要の高まりに起因しており、テキストデータからより高度な対話や洞察を促進する。

コンポーネントタイプ別市場シェア
コンポーネントのタイプに基づき、因果AI市場はアルゴリズム、フレームワーク、ライブラリに区分される。当社の推計によると、現在、アルゴリズム・セグメントが市場の大半のシェアを占めている。これは、アルゴリズムが因果関係AIモデルの基盤として機能し、データ内の因果関係の特定と検証を可能にするという事実に起因している。

さらに、フレームワーク・セグメントは予測期間中に最も高いCAGRを経験すると予測されている。これは、因果関係AIアプリケーションの開発と実装をサポートする強力なフレームワークに対する需要が高まり、組織がこれらの技術をより効率的かつ効果的に活用できるようになることが背景にあると考えられる。

応用分野別市場シェア
因果関係AI市場は、応用分野に基づき、顧客経験管理、不正検知、医療診断、マーケティング最適化、予測保守、リスク管理、サプライチェーン最適化に区分される。当社の推計によると、現在、医療診断分野が市場の大半のシェアを占めている。これは、患者の転帰を向上させ、業務効率を改善するために、医療分野で高度な分析に対するニーズが高まっていることに起因している。

さらに、不正検出セグメントは予測期間中に最も高いCAGRを経験すると予測されている。この増加は、金融サービスやその他の業界において、より強固なセキュリティ対策への需要が高まっていることと関連しており、企業は不正行為をより適切に特定し軽減するために原因AIの活用を目指している。その結果、医療と金融の両分野で因果関係AIへの関心が高まっている。

機能タイプ別市場シェア
因果関係AI市場は、機能の種類に基づき、因果関係発見、因果関係推論、反実仮想分析に区分される。当社の推計によると、現在、因果推論分野が市場の大半のシェアを占めている。これは、企業がデータから因果関係に関する貴重な洞察を引き出すことを可能にするという事実に起因している。

さらに、特にマーケティング、ヘルスケア、オペレーションなどの分野で、意思決定プロセスの改善における因果推論の重要性に対する認識が高まっていることも、市場の成長に大きく寄与している。

業種別市場シェア
産業バーティカルの種類に基づいて、因果AI市場はBFSI、金融サービス、ヘルスケア、製造、小売、輸送&物流にセグメント化される。当社の推計によると、現在、ヘルスケア分野が市場の大半のシェアを占めている。これは、複雑な生物学的システム、疾病経路、治療効果に関する貴重な視点を提供しながら、遺伝的、環境的、ライフスタイル的な影響や特定の疾病との因果関係を明らかにする能力に起因している。

さらに、予測期間中、製造業のCAGRが最も高くなると予測されている。この急増は、予知保全、品質保証、サプライチェーン最適化などの分野で原因AIの導入が増加していることと関連付けることができる。

企業規模別市場シェア
企業規模に基づき、因果AI市場は大企業と中小企業に区分される。当社の推計によると、現在、大企業セグメントが市場の大半のシェアを占めている。しかし、中小企業セグメントは予測期間中に比較的高い成長率を経験すると予想される。この成長は、柔軟性、革新性、ニッチ市場の重視、進化する顧客嗜好と市場力学に適応する能力に起因している。

地域別市場シェア
地域別に見ると、因果AI市場は北米、欧州、アジア、中南米、中東・北アフリカ、その他の地域に区分される。当社の推定によると、現在、北米が市場の大半のシェアを占めている。これは、因果AIの進歩に大きく貢献し、AIアルゴリズム、因果推論、および関連分野の先駆的研究に従事している大手テクノロジー企業、学術機関、研究機関の存在に起因している。

因果AI市場のプレーヤー例
- アイブル
- アイティア
- アクタブルAI
- アリババ
- アマゾン ウェブ サービス
- アメリア
- ビヨンド・リミッツ
- Biotx.ai
- ブループリズム
- カウザ
- カウザAI
- コーサレンズ
- コーザリー
- コーザリー
- 因果関係リンク
- コグニザント
- コグニティブスケール
- データポエム
- データロボット
- データイク
- Databricks
- デカルトラボ
- ダイナトレイス
- エレメントAI
- アーンスト・アンド・ヤング
- フェイスブック
- ジェミノス
- グレンコー・ソフトウェア
- ハウソー
- H2O.ai
- IBM
- インパクトゲノム
- Incrmntl
- インテル
- ライフサイト
- ロジリティ
- マイクロソフト
- モジー
- ネビュラ
- エヌビディア
- オープンAI
- オラクル
- Parabole.AI
- ピンタレスト
- PwC
- ラピッドマイナー
- レスタキオ
- セールスフォース
- SAP SE
- Scalnyx
- セルドン
- ショップファイ
- スラック
- スノーフレイク
- シンフォニー・アヤスディAI
- Taskade
- ThoughtSpot
- TikTok
- Trifacta
- ツイッター
- Uber
- アンラーンAI
- VELDT
- WeChat
- ウィプロ

因果関係AI市場:調査範囲
この調査レポートは、因果関係AI市場を調査・分析した報告書です:
- 市場規模と機会分析:A]提供形態、[B]展開形態、[C]サービス形態、[D]分析形態、[E]技術形態、[F]コンポーネント形態、[G]応用分野、[H]機能形態、[I]業種形態、[J]企業規模、[K]主要地域など、主要市場セグメントに焦点を当てた因果AI市場の詳細分析。
- 競合情勢:因果AI市場に従事する企業を、[A]設立年、[B]企業規模、[C]本社所在地、[D]所有構造などの関連パラメータに基づいて包括的に分析。
- 企業プロフィール:A]本社所在地、[B]企業規模、[C]企業使命、[D]企業フットプリント、[E]経営陣、[F]連絡先詳細、[G]財務情報、[H]事業セグメント、[I]コーザルAIのポートフォリオ、[J]堀分析、[K]最近の動向、および情報に基づく将来の見通しに関する詳細を提供します。
- メガトレンド因果関係AI業界で進行中のメガトレンドの評価。
- 特許分析:A]特許の種類、[B]特許公開年、[C]特許経過年数、[D]主要プレーヤーを含む関連パラメータに基づき、因果AI領域で出願/付与された特許を洞察的に分析。
- 最近の動向:因果AI市場における最近の動向の概要と、[A]イニシアチブの年、[B]イニシアチブのタイプ、[C]地理的分布、[D]最も活発なプレーヤーなどの関連パラメータに基づく分析。
- ポーターのファイブフォース分析:新規参入の脅威、バイヤーの交渉力、サプライヤーの交渉力、代替製品の脅威、既存競合企業間の競争など、原因AI市場に存在する5つの競争力の分析。
- SWOT分析:洞察に満ちたSWOTフレームワークにより、当該領域における強み、弱み、機会、脅威を浮き彫りにします。さらに、各SWOTパラメータの相対的な影響を強調するハーベイボール分析を提供します。

本レポートでお答えする主な質問
- 現在、因果AI市場に従事している企業は何社あるか?
- この市場における主要企業はどこか?
- この市場の進化に影響を与えそうな要因は何か?
- 現在と将来の市場規模は?
- この市場のCAGRは?
- 現在および将来の市場機会は、主要市場セグメントにどのように分配されそうですか?

本レポートを購入する理由
- 当レポートは包括的な市場分析を提供し、市場全体と特定のサブセグメントに関する詳細な収益予測を提供します。この情報は、すでに市場をリードしている企業にとっても、新規参入企業にとっても貴重なものです。
- 利害関係者は、市場内の競争力学をより深く理解するためにレポートを活用することができます。競合状況を分析することで、企業は市場でのポジショニングを最適化し、効果的な市場参入戦略を策定するための情報に基づいた意思決定を行うことができます。
- 当レポートは、主要な促進要因、障壁、機会、課題など、市場の包括的な概要を関係者に提供します。この情報により、関係者は市場動向を把握し、成長の見込みを活用するためのデータ主導の意思決定を行うことができます。

その他の特典
- レポート内の全分析モジュールの無料エクセルデータパック
- 15%の無料コンテンツカスタマイズ
- 調査チームによる詳細レポートのウォークスルーセッション
- レポートが6-12ヶ月以上前の場合、無料更新レポート


ページTOPに戻る


目次

SECTION I: REPORT OVERVIEW

1. PREFACE
1.1. Introduction
1.2. Market Share Insights
1.3. Key Market Insights
1.4. Report Coverage
1.5. Key Questions Answered
1.6. Chapter Outlines

2. RESEARCH METHODOLOGY
2.1. Chapter Overview
2.2. Research Assumptions
2.3. Database Building
2.3.1. Data Collection
2.3.2. Data Validation
2.3.3. Data Analysis

2.4. Project Methodology
2.4.1. Secondary Research
2.4.1.1. Annual Reports
2.4.1.2. Academic Research Papers
2.4.1.3. Company Websites
2.4.1.4. Investor Presentations
2.4.1.5. Regulatory Filings
2.4.1.6. White Papers
2.4.1.7. Industry Publications
2.4.1.8. Conferences and Seminars
2.4.1.9. Government Portals
2.4.1.10. Media and Press Releases
2.4.1.11. Newsletters
2.4.1.12. Industry Databases
2.4.1.13. Roots Proprietary Databases
2.4.1.14. Paid Databases and Sources
2.4.1.15. Social Media Portals
2.4.1.16. Other Secondary Sources
2.4.2. Primary Research
2.4.2.1. Introduction
2.4.2.2. Types
2.4.2.2.1. Qualitative
2.4.2.2.2. Quantitative
2.4.2.3. Advantages
2.4.2.4. Techniques
2.4.2.4.1. Interviews
2.4.2.4.2. Surveys
2.4.2.4.3. Focus Groups
2.4.2.4.4. Observational Research
2.4.2.4.5. Social Media Interactions
2.4.2.5. Stakeholders
2.4.2.5.1. Company Executives (CXOs)
2.4.2.5.2. Board of Directors
2.4.2.5.3. Company Presidents and Vice Presidents
2.4.2.5.4. Key Opinion Leaders
2.4.2.5.5. Research and Development Heads
2.4.2.5.6. Technical Experts
2.4.2.5.7. Subject Matter Experts
2.4.2.5.8. Scientists
2.4.2.5.9. Doctors and Other Healthcare Providers
2.4.2.6. Ethics and Integrity
2.4.2.6.1. Research Ethics
2.4.2.6.2. Data Integrity

2.4.3. Analytical Tools and Databases

3. MARKET DYNAMICS
3.1. Forecast Methodology
3.1.1. Top-Down Approach
3.1.2. Bottom-Up Approach
3.1.3. Hybrid Approach
3.2. Market Assessment Framework
3.2.1. Total Addressable Market (TAM)
3.2.2. Serviceable Addressable Market (SAM)
3.2.3. Serviceable Obtainable Market (SOM)
3.2.4. Currently Acquired Market (CAM)
3.3. Forecasting Tools and Techniques
3.3.1. Qualitative Forecasting
3.3.2. Correlation
3.3.3. Regression
3.3.4. Time Series Analysis
3.3.5. Extrapolation
3.3.6. Convergence
3.3.7. Forecast Error Analysis
3.3.8. Data Visualization
3.3.9. Scenario Planning
3.3.10. Sensitivity Analysis
3.4. Key Considerations
3.4.1. Demographics
3.4.2. Market Access
3.4.3. Reimbursement Scenarios
3.4.4. Industry Consolidation
3.5. Robust Quality Control
3.6. Key Market Segmentations
3.7. Limitations

4. MACRO-ECONOMIC INDICATORS
4.1. Chapter Overview
4.2. Market Dynamics
4.2.1. Time Period
4.2.1.1. Historical Trends
4.2.1.2. Current and Forecasted Estimates
4.2.2. Currency Coverage
4.2.2.1. Overview of Major Currencies Affecting the Market
4.2.2.2. Impact of Currency Fluctuations on the Industry
4.2.3. Foreign Exchange Impact
4.2.3.1. Evaluation of Foreign Exchange Rates and Their Impact on Market
4.2.3.2. Strategies for Mitigating Foreign Exchange Risk
4.2.4. Recession
4.2.4.1. Historical Analysis of Past Recessions and Lessons Learnt
4.2.4.2. Assessment of Current Economic Conditions and Potential Impact on the Market
4.2.5. Inflation
4.2.5.1. Measurement and Analysis of Inflationary Pressures in the Economy
4.2.5.2. Potential Impact of Inflation on the Market Evolution
4.2.6. Interest Rates
4.2.6.1. Overview of Interest Rates and Their Impact on the Market
4.2.6.2. Strategies for Managing Interest Rate Risk
4.2.7. Commodity Flow Analysis
4.2.7.1. Type of Commodity
4.2.7.2. Origins and Destinations
4.2.7.3. Values and Weights
4.2.7.4. Modes of Transportation
4.2.8. Global Trade Dynamics
4.2.8.1. Import Scenario
4.2.8.2. Export Scenario
4.2.9. War Impact Analysis
4.2.9.1. Russian-Ukraine War
4.2.9.2. Israel-Hamas War
4.2.10. COVID Impact / Related Factors
4.2.10.1. Global Economic Impact
4.2.10.2. Industry-specific Impact
4.2.10.3. Government Response and Stimulus Measures
4.2.10.4. Future Outlook and Adaptation Strategies
4.2.11. Other Indicators
4.2.11.1. Fiscal Policy
4.2.11.2. Consumer Spending
4.2.11.3. Gross Domestic Product (GDP)
4.2.11.4. Employment
4.2.11.5. Taxes
4.2.11.6. R&D Innovation
4.2.11.7. Stock Market Performance
4.2.11.8. Supply Chain
4.2.11.9. Cross-Border Dynamics

SECTION II: QUALITATIVE INSIGHTS

5. EXECUTIVE SUMMARY

6. INTRODUCTION
6.1. Chapter Overview
6.2. Overview of Causal AI Market
6.2.1. Type of Offering
6.2.2. Types of Deployment Mode
6.2.3. Type of Services
6.2.4. Type of Analytics
6.2.5. Type of Technology
6.2.6. Type of Component
6.2.7. Areas of Application
6.2.8. Type of Functionality
6.2.9. Type of Industry Vertical
6.3. Future Perspective

7. REGULATORY SCENARIO

SECTION III: MARKET OVERVIEW

8. COMPREHENSIVE DATABASE OF LEADING PLAYERS

9. COMPETITIVE LANDSCAPE
9.1. Chapter Overview
9.2. Causal AI Market: Overall Market Landscape
9.2.1. Analysis by Year of Establishment
9.2.2. Analysis by Company Size
9.2.3. Analysis by Location of Headquarters
9.2.4. Analysis by Ownership Structure

10. WHITE SPACE ANALYSIS

11. COMPANY COMPETITIVENESS ANALYSIS

12. STARTUP ECOSYSTEM IN THE CAUSAL AI MARKET
12.1. Causal AI Market: Market Landscape of Startups
12.1.1. Analysis by Year of Establishment
12.1.2. Analysis by Company Size
12.1.3. Analysis by Company Size and Year of Establishment
12.1.4. Analysis by Location of Headquarters
12.1.5. Analysis by Company Size and Location of Headquarters
12.1.6. Analysis by Ownership Structure
12.2. Key Findings

SECTION IV: COMPANY PROFILES

13. COMPANY PROFILES
13.1. Chapter Overview
13.2. Aible*
13.2.1. Company Overview
13.2.2. Company Mission
13.2.3. Company Footprint
13.2.4. Management Team
13.2.5. Contact Details
13.2.6. Financial Performance
13.2.7. Operating Business Segments
13.2.8. Service / Product Portfolio (project specific)
13.2.9. MOAT Analysis
13.2.10. Recent Developments and Future Outlook

* similar detail is presented for other below mentioned companies based on information in the public domain

13.3. Aitia
13.4. Actable AI
13.5. Alibaba
13.6. Amazon Web Services
13.7. Amelia.ai
13.8. Beyond Limits
13.9. Biotx.ai
13.10. Blue Prism
13.11. Causa
13.12. Causality Link
13.13. Cognizant
13.14. Data Poem
13.15. DataRobot
13.16. Dataiku
13.17. IBM
13.18. Microsoft
13.19. NVIDIA
13.20. OpenAI

SECTION V: MARKET TRENDS

14. MEGA TRENDS ANALYSIS

15. UNMET NEED ANALYSIS

16. PATENT ANALYSIS

17. RECENT DEVELOPMENTS
17.1. Chapter Overview
17.2. Recent Funding
17.3. Recent Partnerships
17.4. Other Recent Initiatives

SECTION VI: MARKET OPPORTUNITY ANALYSIS

18. GLOBAL CAUSAL AI MARKET
18.1. Chapter Overview
18.2. Key Assumptions and Methodology
18.3. Trends Disruption Impacting Market
18.4. Demand Side Trends
18.5. Supply Side Trends
18.6. Global Causal AI Market, Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
18.7. Multivariate Scenario Analysis
18.7.1. Conservative Scenario
18.7.2. Optimistic Scenario
18.8. Investment Feasibility Index
18.9. Key Market Segmentations

19. MARKET OPPORTUNITIES BASED ON TYPE OF OFFERING
19.1. Chapter Overview
19.2. Key Assumptions and Methodology
19.3. Revenue Shift Analysis
19.4. Market Movement Analysis
19.5. Penetration-Growth (P-G) Matrix
19.6. Causal AI Market for Services: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
19.7. Causal AI Market for Software: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
19.8. Data Triangulation and Validation
19.8.1. Secondary Sources
19.8.2. Primary Sources
19.8.3. Statistical Modeling

20. MARKET OPPORTUNITIES BASED ON TYPE OF DEPLOYMENT MODE
20.1. Chapter Overview
20.2. Key Assumptions and Methodology
20.3. Revenue Shift Analysis
20.4. Market Movement Analysis
20.5. Penetration-Growth (P-G) Matrix
20.6. Causal AI Market for Cloud: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
20.7. Causal AI Market for Hybrid: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
20.8. Causal AI Market for On-Premises: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
20.9. Data Triangulation and Validation
20.9.1. Secondary Sources
20.9.2. Primary Sources
20.9.3. Statistical Modeling

21. MARKET OPPORTUNITIES BASED ON TYPE OF SERVICES
21.1. Chapter Overview
21.2. Key Assumptions and Methodology
21.3. Revenue Shift Analysis
21.4. Market Movement Analysis
21.5. Penetration-Growth (P-G) Matrix
21.6. Causal AI Market for Consulting: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
21.7. Causal AI Market for Deployment & Integration: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
21.8. Causal AI Market for Support and Maintenance: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
21.9. Causal AI Market for Training: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
21.10. Data Triangulation and Validation
21.10.1. Secondary Sources
21.10.2. Primary Sources
21.10.3. Statistical Modeling

22. MARKET OPPORTUNITIES BASED ON TYPE OF ANALYTICS
22.1. Chapter Overview
22.2. Key Assumptions and Methodology
22.3. Revenue Shift Analysis
22.4. Market Movement Analysis
22.5. Penetration-Growth (P-G) Matrix
22.6. Causal AI Market for Descriptive Analytics: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
22.7. Causal AI Market for Predictive Analytics: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
22.8. Causal AI Market for Prescriptive Analytics: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
22.9. Data Triangulation and Validation
22.9.1. Secondary Sources
22.9.2. Primary Sources
22.9.3. Statistical Modeling

23. MARKET OPPORTUNITIES BASED ON TYPE OF TECHNOLOGY
23.1. Chapter Overview
23.2. Key Assumptions and Methodology
23.3. Revenue Shift Analysis
23.4. Market Movement Analysis
23.5. Penetration-Growth (P-G) Matrix
23.6. Causal AI Market for Computer Vision: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
23.7. Causal AI Market for Deep Learning: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
23.8. Causal AI Market for Machine Learning: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
23.9. Causal AI Market for Natural Language Processing: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
23.10. Data Triangulation and Validation
23.10.1. Secondary Sources
23.10.2. Primary Sources
23.10.3. Statistical Modeling

24. MARKET OPPORTUNITIES BASED ON TYPE OF COMPONENT
24.1. Chapter Overview
24.2. Key Assumptions and Methodology
24.3. Revenue Shift Analysis
24.4. Market Movement Analysis
24.5. Penetration-Growth (P-G) Matrix
24.6. Causal AI Market for Algorithms: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
24.7. Causal AI Market for Frameworks: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
24.8. Causal AI Market for Libraries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
24.9. Data Triangulation and Validation
24.9.1. Secondary Sources
24.9.2. Primary Sources
24.9.3. Statistical Modeling

25. MARKET OPPORTUNITIES BASED ON AREAS OF APPLICATION
25.1. Chapter Overview
25.2. Key Assumptions and Methodology
25.3. Revenue Shift Analysis
25.4. Market Movement Analysis
25.5. Penetration-Growth (P-G) Matrix
25.6. Causal AI Market for Customer Experience Management: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.7. Causal AI Market for Fraud Detection: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.8. Causal AI Market for Healthcare Diagnostics: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.9. Causal AI Market for Marketing Optimization: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.10. Causal AI Market for Predictive Maintenance: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.11. Causal AI Market for Risk Management: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.12. Causal AI Market for Supply Chain Optimization: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.13. Data Triangulation and Validation
25.13.1. Secondary Sources
25.13.2. Primary Sources
25.13.3. Statistical Modeling

26. MARKET OPPORTUNITIES BASED ON TYPE OF FUNCTIONALITY
26.1. Chapter Overview
26.2. Key Assumptions and Methodology
26.3. Revenue Shift Analysis
26.4. Market Movement Analysis
26.5. Penetration-Growth (P-G) Matrix
26.6. Causal AI Market for Causal Discovery: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
26.7. Causal AI Market for Causal Inference: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
26.8. Causal AI Market for Counterfactual Analysis: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
26.9. Data Triangulation and Validation
26.9.1. Secondary Sources
26.9.2. Primary Sources
26.9.3. Statistical Modeling

27. MARKET OPPORTUNITIES BASED ON TYPE OF INDUSTRY VERTICAL
27.1. Chapter Overview
27.2. Key Assumptions and Methodology
27.3. Revenue Shift Analysis
27.4. Market Movement Analysis
27.5. Penetration-Growth (P-G) Matrix
27.6. Causal AI Market for BFSI: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.7. Causal AI Market for Financial Services: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.8. Causal AI Market for Healthcare: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.9. Causal AI Market for Manufacturing: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.10. Causal AI Market for Retail: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.11. Causal AI Market for Transportation & Logistics: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.12. Data Triangulation and Validation
27.12.1. Secondary Sources
27.12.2. Primary Sources
27.12.3. Statistical Modeling

28. MARKET OPPORTUNITIES FOR CAUSAL AI IN NORTH AMERICA
28.1. Chapter Overview
28.2. Key Assumptions and Methodology
28.3. Revenue Shift Analysis
28.4. Market Movement Analysis
28.5. Penetration-Growth (P-G) Matrix
28.6. Causal AI Market in North America: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
28.6.1. Causal AI Market in the US: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
28.6.2. Causal AI Market in Canada: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
28.6.3. Causal AI Market in Mexico: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
28.6.4. Causal AI Market in Other North American Countries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
28.7. Data Triangulation and Validation

29. MARKET OPPORTUNITIES FOR CAUSAL AI IN EUROPE
29.1. Chapter Overview
29.2. Key Assumptions and Methodology
29.3. Revenue Shift Analysis
29.4. Market Movement Analysis
29.5. Penetration-Growth (P-G) Matrix
29.6. Causal AI Market in Europe: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.1. Causal AI Market in Austria: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.2. Causal AI Market in Belgium: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.3. Causal AI Market in Denmark: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.4. Causal AI Market in France: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.5. Causal AI Market in Germany: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.6. Causal AI Market in Ireland: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.7. Causal AI Market in Italy: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.8. Causal AI Market in Netherlands: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.9. Causal AI Market in Norway: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.10. Causal AI Market in Russia: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.11. Causal AI Market in Spain: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.12. Causal AI Market in Sweden: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.13. Causal AI Market in Sweden: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.14. Causal AI Market in Switzerland: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.15. Causal AI Market in the UK: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.16. Causal AI Market in Other European Countries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.7. Data Triangulation and Validation

30. MARKET OPPORTUNITIES FOR CAUSAL AI IN ASIA
30.1. Chapter Overview
30.2. Key Assumptions and Methodology
30.3. Revenue Shift Analysis
30.4. Market Movement Analysis
30.5. Penetration-Growth (P-G) Matrix
30.6. Causal AI Market in Asia: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.1. Causal AI Market in China: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.2. Causal AI Market in India: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.3. Causal AI Market in Japan: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.4. Causal AI Market in Singapore: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.5. Causal AI Market in South Korea: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.6. Causal AI Market in Other Asian Countries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.7. Data Triangulation and Validation

31. MARKET OPPORTUNITIES FOR CAUSAL AI IN MIDDLE EAST AND NORTH AFRICA (MENA)
31.1. Chapter Overview
31.2. Key Assumptions and Methodology
31.3. Revenue Shift Analysis
31.4. Market Movement Analysis
31.5. Penetration-Growth (P-G) Matrix
31.6. Causal AI Market in Middle East and North Africa (MENA): Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.1. Causal AI Market in Egypt: Historical Trends (Since 2020) and Forecasted Estimates (Till 205)
31.6.2. Causal AI Market in Iran: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.3. Causal AI Market in Iraq: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.4. Causal AI Market in Israel: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.5. Causal AI Market in Kuwait: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.6. Causal AI Market in Saudi Arabia: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.7. Causal AI Market in United Arab Emirates (UAE): Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.8. Causal AI Market in Other MENA Countries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.7. Data Triangulation and Validation

32. MARKET OPPORTUNITIES FOR CAUSAL AI IN LATIN AMERICA
32.1. Chapter Overview
32.2. Key Assumptions and Methodology
32.3. Revenue Shift Analysis
32.4. Market Movement Analysis
32.5. Penetration-Growth (P-G) Matrix
32.6. Causal AI Market in Latin America: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.1. Causal AI Market in Argentina: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.2. Causal AI Market in Brazil: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.3. Causal AI Market in Chile: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.4. Causal AI Market in Colombia Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.5. Causal AI Market in Venezuela: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.6. Causal AI Market in Other Latin American Countries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.7. Data Triangulation and Validation

33. MARKET OPPORTUNITIES FOR CAUSAL AI IN REST OF THE WORLD
33.1. Chapter Overview
33.2. Key Assumptions and Methodology
33.3. Revenue Shift Analysis
33.4. Market Movement Analysis
33.5. Penetration-Growth (P-G) Matrix
33.6. Causal AI Market in Rest of the World: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
33.6.1. Causal AI Market in Australia: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
33.6.2. Causal AI Market in New Zealand: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
33.6.3. Causal AI Market in Other Countries
33.7. Data Triangulation and Validation

34. MARKET CONCENTRATION ANALYSIS: DISTRIBUTION BY LEADING PLAYERS
34.1. Leading Player 1
34.2. Leading Player 2
34.3. Leading Player 3
34.4. Leading Player 4
34.5. Leading Player 5
34.6. Leading Player 6
34.7. Leading Player 7
34.8. Leading Player 8

35. ADJACENT MARKET ANALYSIS

SECTION VII: STRATEGIC TOOLS

36. KEY WINNING STRATEGIES

37. PORTER'S FIVE FORCES ANALYSIS

38. SWOT ANALYSIS

39. VALUE CHAIN ANALYSIS

40. ROOTS STRATEGIC RECOMMENDATIONS
40.1. Chapter Overview
40.2. Key Business-related Strategies
40.2.1. Research & Development
40.2.2. Product Manufacturing
40.2.3. Commercialization / Go-to-Market
40.2.4. Sales and Marketing
40.3. Key Operations-related Strategies
40.3.1. Risk Management
40.3.2. Workforce
40.3.3. Finance
40.3.4. Others

SECTION VIII: OTHER EXCLUSIVE INSIGHTS

41. INSIGHTS FROM PRIMARY RESEARCH
42. REPORT CONCLUSION

SECTION IX: APPENDIX
43. TABULATED DATA
44. LIST OF COMPANIES AND ORGANIZATIONS
45. CUSTOMIZATION OPPORTUNITIES
46. ROOTS SUBSCRIPTION SERVICES
47. AUTHOR DETAILS

 

ページTOPに戻る


 

Summary

Causal AI Market Overview
As per Roots Analysis, the global causal AI market size is estimated to grow from USD 63.37 million in the current year to USD 1,628.43 million by 2035, at a CAGR of 38.35% during the forecast period, till 2035.



The opportunity for causal AI market has been distributed across the following segments:

Type of Offering
- Services
- Software

Type of Deployment Mode
- Cloud
- Hybrid
- On-Premises

Type of Services
- Consulting
- Deployment & Integration
- Support and Maintenance
- Training

Type of Analytics
- Descriptive Analytics
- Predictive Analytics
- Prescriptive Analytics

Type of Technology
- Computer Vision
- Deep Learning
- Machine Learning
- Natural Language Processing

Type of Component
- Algorithms
- Frameworks
- Libraries

Areas of Application
- Customer Experience Management
- Fraud Detection
- Healthcare Diagnostics
- Marketing Optimization
- Predictive Maintenance
- Risk Management
- Supply Chain Optimization

Type of Functionality
- Causal Discovery
- Causal Inference
- Counterfactual Analysis

Type of Industry Vertical
- BFSI
- Financial Services
- Healthcare
- Manufacturing
- Retail
- Transportation & Logistics

Company Size
- Large Enterprises
- Small and Medium Enterprises

Geographical Regions
- North America
- US
- Canada
- Mexico
- Other North American countries
- Europe
- Austria
- Belgium
- Denmark
- France
- Germany
- Ireland
- Italy
- Netherlands
- Norway
- Russia
- Spain
- Sweden
- Switzerland
- UK
- Other European countries
- Asia
- China
- India
- Japan
- Singapore
- South Korea
- Other Asian countries
- Latin America
- Brazil
- Chile
- Colombia
- Venezuela
- Other Latin American countries
- Middle East and North Africa
- Egypt
- Iran
- Iraq
- Israel
- Kuwait
- Saudi Arabia
- UAE
- Other MENA countries
- Rest of the World
- Australia
- New Zealand
- Other countries

CAUSAL AI MARKET: GROWTH AND TRENDS
Causal AI signifies a significant breakthrough in the field of artificial intelligence and machine learning, focusing on the detection and application of cause-and-effect relationships within datasets. In contrast to the conventional AI models that primarily depend on correlation-based techniques to recognize patterns and make predictions, causal AI tackles situations where comprehending the fundamental causal mechanisms is crucial. By incorporating principles from causal inference, a statistical and philosophical field dedicated to uncovering causal relationships from data, causal AI improves the analytical capabilities of AI technologies.

The demand for causal AI is witnessing considerable surge driven by various factors. Further, the increasing use of virtual assistants and chatbots that can hold natural language conversations has heightened the appeal for causal AI applications. Moreover, the lower costs associated with hardware, cloud computing, and data storage have rendered AI technology more accessible to a broader spectrum of individuals and organizations. Notably, this financial accessibility has facilitated the development and integration of causal AI solutions, bringing these innovations closer to everyday users, thereby propelling the growth within this market, during the forecast period.

CAUSAL AI MARKET: KEY SEGMENTS

Market Share by Type of Offering
Based on type of offering, the global causal AI market is segmented services and software. According to our estimates, currently, services segment captures the majority share of the market. This can be attributed to the growing demand for consulting, integration, and continuous support as organizations aim to effectively implement causal AI solutions. However, the software segment is anticipated to grow at a relatively higher CAGR during the forecast period.

Market Share by Type of Deployment Mode
Based on type of deployment mode, the causal AI market is segmented into cloud, hybrid and on-premises. According to our estimates, currently, cloud segment captures the majority of the market. Further, this segment is expected to grow at a higher CAGR during the forecast period. This can be attributed to the benefits provided by cloud platforms, including scalability, accessibility, and reduced initial expenses relative to on-premises solutions.
The rising implementation of cloud technologies, coupled with the increasing demand for sophisticated analytics abilities across different sectors, is also driving market growth. Further, cloud-based solutions enable organizations to swiftly modify their resources according to demand, which is particularly advantageous for applications that need considerable computational power.

Market Share by Type of Service
Based on type of service, the causal AI market is segmented into consulting, deployment & integration, support & maintenance, and training. According to our estimates, currently, consulting segment captures the majority share of the market. This can be attributed to the important role that consulting plays in helping organizations implement and make the most of causal AI technologies. Consulting services assist businesses in comprehending how to apply causal AI to enhance decision-making processes and improve operational efficiency.

However, the support and maintenance sector is anticipated to grow at a relatively higher CAGR during the forecast period. This growth is driven by the increasing need for continuous support and training as organizations adopt causal AI solutions and seek help in optimizing their implementation and ensuring successful integration with existing systems.

Market Share by Type of Analytics
Based on type of analytics, the causal AI market is segmented into descriptive analytics, predictive analytics, and prescriptive analytics. According to our estimates, currently, predictive analytics segment captures the majority share of the market. This can be attributed to its extensive adoption by organizations to predict results based on past data and trends, making it a vital resource for decision-making across a range of industries.

In addition, the prescriptive analytics sector is projected to experience the highest CAGR during the forecast period. This is due to its capability to not only forecast results but also suggest actions to achieve intended outcomes. This feature is becoming increasingly important for companies looking to enhance their operations and strategies.

Market Share by Type of Technology
Based on type of technology, the causal AI market is segmented into computer vision, deep learning, machine learning, and natural language processing. According to our estimates, currently, machine learning segment captures the majority share of the market. This can be attributed to their capability to establish a foundation for various causal AI applications, which enables systems to learn from data and accurately discern cause-and-effect relationships.

Additionally, the natural language processing (NLP) sector is projected to experience the highest CAGR during the forecast period, owing to the rising demand for AI systems that can comprehend and interpret human language, facilitating more advanced interactions and insights from textual data.

Market Share by Type of Component
Based on type of component, the causal AI market is segmented into algorithms, frameworks, libraries. According to our estimates, currently, algorithms segment captures the majority share of the market. This can be attributed to the fact that algorithms serve as the foundation of causal AI models, allowing for the identification and examination of cause-and-effect relationships in data.

Additionally, the frameworks segment is projected to experience the highest CAGR during the forecast period. This is likely to be driven by the rising demand for strong frameworks that support the development and implementation of causal AI applications, enabling organizations to utilize these technologies more efficiently and effectively.

Market Share by Areas of Application
Based on areas of application, the causal AI market is segmented into customer experience management, fraud detection, healthcare diagnostics, marketing optimization, predictive maintenance, risk management, and supply chain optimization. According to our estimates, currently, healthcare diagnostics segment captures the majority share of the market. This can be attributed to the rising need for advanced analytics in the healthcare sector to enhance patient outcomes and improve operational efficiency.

Additionally, the fraud detection segment is projected to experience the highest CAGR during the forecast period. This increase can be linked to the growing demand for stronger security measures in financial services and other industries, as organizations aim to utilize causal AI to better identify and mitigate fraudulent activities. As a result, there is a heightened interest in causal AI within both healthcare and finance.

Market Share by Type of Functionality
Based on type of functionality, the causal AI market is segmented into causal discovery, causal inference, and counterfactual analysis. According to our estimates, currently, causal inference segment captures the majority share of the market. This can be attributed to the fact that it enables organizations to extract valuable insights about cause-and-effect relationships from data, which is crucial for making informed decisions across different industries.

Additionally, the growing awareness of its significance in improving decision-making processes, especially in areas such as marketing, healthcare, and operations, is significantly contributing to the growth of the market.

Market Share by Types of Industry Vertical
Based on types of industry vertical, the causal AI market is segmented into BFSI, financial services, healthcare, manufacturing, retail, transportation & logistics. According to our estimates, currently, healthcare segment captures the majority share of the market. This can be attributed to its capability to uncover causal connections among genetic, environmental, and lifestyle influences, as well as particular diseases, while offering valuable perspectives on intricate biological systems, disease pathways, and the effectiveness of treatments.

In addition, the manufacturing sector is projected to experience the highest CAGR during the forecast period. This surge can be linked to the rising implementation of causal AI in areas such as predictive maintenance, quality assurance, and supply chain optimization.

Market Share by Company Size
Based on company size, the causal AI market is segmented into large and small and medium enterprise. According to our estimates, currently, large enterprise segment captures the majority share of the market. However, the small and medium enterprise segment is expected to experience a comparatively higher growth rate during the forecast period. This growth can be attributed to their flexibility, innovation, emphasis on niche markets, and capability to adjust to evolving customer preferences and market dynamics.

Market Share by Geographical Regions
Based on geographical regions, the causal AI market is segmented into North America, Europe, Asia, Latin America, Middle East and North Africa, and the rest of the world. According to our estimates, currently, North America captures the majority share of the market. This can be attributed to the presence of leading technology companies, academic institutions, and research organizations that are significantly contributing to advancements in causal AI and are engaged in pioneering research in AI algorithms, causal inference, and related fields..

Example Players in Causal AI Market
- Aible
- Aitia
- Actable AI
- Alibaba
- Amazon Web Services
- Amelia.ai
- Beyond Limits
- Biotx.ai
- Blue Prism
- Causa
- CausaAI
- CausaLens
- Causaly
- Causely
- Causality Link
- Cognizant
- CognitiveScale
- Data Poem
- DataRobot
- Dataiku
- Databricks
- Descartes Labs
- Dynatrace
- Element AI
- Ernst & Young
- Facebook
- Geminos
- Glencoe Software
- Howso
- H2O.ai
- IBM
- Impact Genome
- Incrmntl
- Intel
- Lifesight
- Logility
- Microsoft
- Modzy
- Nebula
- NVIDIA
- OpenAI
- Oracle
- Parabole.AI
- Pinterest
- PwC
- RapidMiner
- Restackio
- Salesforce
- SAP SE
- Scalnyx
- Seldon
- Shopify
- Slack
- Snowflake
- Symphony Ayasdi AI
- Taskade
- ThoughtSpot
- TikTok
- Trifacta
- Twitter
- Uber
- Unlearn.AI
- VELDT
- WeChat
- Wipro

CAUSAL AI MARKET: RESEARCH COVERAGE
The report on the causal AI market features insights on various sections, including:
- Market Sizing and Opportunity Analysis: An in-depth analysis of the causal AI market, focusing on key market segments, including [A] type of offering, [B] type of deployment mode, [C] type of services, [D] type of analytics, [E] type of technology, [F] type of component, [G] areas of application, [H] type of functionality, [I] type of industry vertical, [J] company size and [K] key geographical regions.
- Competitive Landscape: A comprehensive analysis of the companies engaged in the causal AI market, based on several relevant parameters, such as [A] year of establishment, [B] company size, [C] location of headquarters and [D] ownership structure.
- Company Profiles: Elaborate profiles of prominent players engaged in the causal AI market, providing details on [A] location of headquarters, [B]company size, [C] company mission, [D] company footprint, [E] management team, [F] contact details, [G] financial information, [H] operating business segments, [I] causal AI portfolio, [J] moat analysis, [K] recent developments, and an informed future outlook.
- Megatrends: An evaluation of ongoing megatrends in causal AI industry.
- Patent Analysis: An insightful analysis of patents filed / granted in the causal AI domain, based on relevant parameters, including [A] type of patent, [B] patent publication year, [C] patent age and [D] leading players.
- Recent Developments: An overview of the recent developments made in the causal AI market, along with analysis based on relevant parameters, including [A] year of initiative, [B] type of initiative, [C] geographical distribution and [D] most active players.
- Porter’s Five Forces Analysis: An analysis of five competitive forces prevailing in the causal AI market, including threats of new entrants, bargaining power of buyers, bargaining power of suppliers, threats of substitute products and rivalry among existing competitors.
- SWOT Analysis: An insightful SWOT framework, highlighting the strengths, weaknesses, opportunities and threats in the domain. Additionally, it provides Harvey ball analysis, highlighting the relative impact of each SWOT parameter.

KEY QUESTIONS ANSWERED IN THIS REPORT
- How many companies are currently engaged in causal AI market?
- Which are the leading companies in this market?
- What factors are likely to influence the evolution of this market?
- What is the current and future market size?
- What is the CAGR of this market?
- How is the current and future market opportunity likely to be distributed across key market segments?

REASONS TO BUY THIS REPORT
- The report provides a comprehensive market analysis, offering detailed revenue projections of the overall market and its specific sub-segments. This information is valuable to both established market leaders and emerging entrants.
- Stakeholders can leverage the report to gain a deeper understanding of the competitive dynamics within the market. By analyzing the competitive landscape, businesses can make informed decisions to optimize their market positioning and develop effective go-to-market strategies.
- The report offers stakeholders a comprehensive overview of the market, including key drivers, barriers, opportunities, and challenges. This information empowers stakeholders to stay abreast of market trends and make data-driven decisions to capitalize on growth prospects.

ADDITIONAL BENEFITS
- Complimentary Excel Data Packs for all Analytical Modules in the Report
- 15% Free Content Customization
- Detailed Report Walkthrough Session with Research Team
- Free Updated report if the report is 6-12 months old or older



ページTOPに戻る


Table of Contents

SECTION I: REPORT OVERVIEW

1. PREFACE
1.1. Introduction
1.2. Market Share Insights
1.3. Key Market Insights
1.4. Report Coverage
1.5. Key Questions Answered
1.6. Chapter Outlines

2. RESEARCH METHODOLOGY
2.1. Chapter Overview
2.2. Research Assumptions
2.3. Database Building
2.3.1. Data Collection
2.3.2. Data Validation
2.3.3. Data Analysis

2.4. Project Methodology
2.4.1. Secondary Research
2.4.1.1. Annual Reports
2.4.1.2. Academic Research Papers
2.4.1.3. Company Websites
2.4.1.4. Investor Presentations
2.4.1.5. Regulatory Filings
2.4.1.6. White Papers
2.4.1.7. Industry Publications
2.4.1.8. Conferences and Seminars
2.4.1.9. Government Portals
2.4.1.10. Media and Press Releases
2.4.1.11. Newsletters
2.4.1.12. Industry Databases
2.4.1.13. Roots Proprietary Databases
2.4.1.14. Paid Databases and Sources
2.4.1.15. Social Media Portals
2.4.1.16. Other Secondary Sources
2.4.2. Primary Research
2.4.2.1. Introduction
2.4.2.2. Types
2.4.2.2.1. Qualitative
2.4.2.2.2. Quantitative
2.4.2.3. Advantages
2.4.2.4. Techniques
2.4.2.4.1. Interviews
2.4.2.4.2. Surveys
2.4.2.4.3. Focus Groups
2.4.2.4.4. Observational Research
2.4.2.4.5. Social Media Interactions
2.4.2.5. Stakeholders
2.4.2.5.1. Company Executives (CXOs)
2.4.2.5.2. Board of Directors
2.4.2.5.3. Company Presidents and Vice Presidents
2.4.2.5.4. Key Opinion Leaders
2.4.2.5.5. Research and Development Heads
2.4.2.5.6. Technical Experts
2.4.2.5.7. Subject Matter Experts
2.4.2.5.8. Scientists
2.4.2.5.9. Doctors and Other Healthcare Providers
2.4.2.6. Ethics and Integrity
2.4.2.6.1. Research Ethics
2.4.2.6.2. Data Integrity

2.4.3. Analytical Tools and Databases

3. MARKET DYNAMICS
3.1. Forecast Methodology
3.1.1. Top-Down Approach
3.1.2. Bottom-Up Approach
3.1.3. Hybrid Approach
3.2. Market Assessment Framework
3.2.1. Total Addressable Market (TAM)
3.2.2. Serviceable Addressable Market (SAM)
3.2.3. Serviceable Obtainable Market (SOM)
3.2.4. Currently Acquired Market (CAM)
3.3. Forecasting Tools and Techniques
3.3.1. Qualitative Forecasting
3.3.2. Correlation
3.3.3. Regression
3.3.4. Time Series Analysis
3.3.5. Extrapolation
3.3.6. Convergence
3.3.7. Forecast Error Analysis
3.3.8. Data Visualization
3.3.9. Scenario Planning
3.3.10. Sensitivity Analysis
3.4. Key Considerations
3.4.1. Demographics
3.4.2. Market Access
3.4.3. Reimbursement Scenarios
3.4.4. Industry Consolidation
3.5. Robust Quality Control
3.6. Key Market Segmentations
3.7. Limitations

4. MACRO-ECONOMIC INDICATORS
4.1. Chapter Overview
4.2. Market Dynamics
4.2.1. Time Period
4.2.1.1. Historical Trends
4.2.1.2. Current and Forecasted Estimates
4.2.2. Currency Coverage
4.2.2.1. Overview of Major Currencies Affecting the Market
4.2.2.2. Impact of Currency Fluctuations on the Industry
4.2.3. Foreign Exchange Impact
4.2.3.1. Evaluation of Foreign Exchange Rates and Their Impact on Market
4.2.3.2. Strategies for Mitigating Foreign Exchange Risk
4.2.4. Recession
4.2.4.1. Historical Analysis of Past Recessions and Lessons Learnt
4.2.4.2. Assessment of Current Economic Conditions and Potential Impact on the Market
4.2.5. Inflation
4.2.5.1. Measurement and Analysis of Inflationary Pressures in the Economy
4.2.5.2. Potential Impact of Inflation on the Market Evolution
4.2.6. Interest Rates
4.2.6.1. Overview of Interest Rates and Their Impact on the Market
4.2.6.2. Strategies for Managing Interest Rate Risk
4.2.7. Commodity Flow Analysis
4.2.7.1. Type of Commodity
4.2.7.2. Origins and Destinations
4.2.7.3. Values and Weights
4.2.7.4. Modes of Transportation
4.2.8. Global Trade Dynamics
4.2.8.1. Import Scenario
4.2.8.2. Export Scenario
4.2.9. War Impact Analysis
4.2.9.1. Russian-Ukraine War
4.2.9.2. Israel-Hamas War
4.2.10. COVID Impact / Related Factors
4.2.10.1. Global Economic Impact
4.2.10.2. Industry-specific Impact
4.2.10.3. Government Response and Stimulus Measures
4.2.10.4. Future Outlook and Adaptation Strategies
4.2.11. Other Indicators
4.2.11.1. Fiscal Policy
4.2.11.2. Consumer Spending
4.2.11.3. Gross Domestic Product (GDP)
4.2.11.4. Employment
4.2.11.5. Taxes
4.2.11.6. R&D Innovation
4.2.11.7. Stock Market Performance
4.2.11.8. Supply Chain
4.2.11.9. Cross-Border Dynamics

SECTION II: QUALITATIVE INSIGHTS

5. EXECUTIVE SUMMARY

6. INTRODUCTION
6.1. Chapter Overview
6.2. Overview of Causal AI Market
6.2.1. Type of Offering
6.2.2. Types of Deployment Mode
6.2.3. Type of Services
6.2.4. Type of Analytics
6.2.5. Type of Technology
6.2.6. Type of Component
6.2.7. Areas of Application
6.2.8. Type of Functionality
6.2.9. Type of Industry Vertical
6.3. Future Perspective

7. REGULATORY SCENARIO

SECTION III: MARKET OVERVIEW

8. COMPREHENSIVE DATABASE OF LEADING PLAYERS

9. COMPETITIVE LANDSCAPE
9.1. Chapter Overview
9.2. Causal AI Market: Overall Market Landscape
9.2.1. Analysis by Year of Establishment
9.2.2. Analysis by Company Size
9.2.3. Analysis by Location of Headquarters
9.2.4. Analysis by Ownership Structure

10. WHITE SPACE ANALYSIS

11. COMPANY COMPETITIVENESS ANALYSIS

12. STARTUP ECOSYSTEM IN THE CAUSAL AI MARKET
12.1. Causal AI Market: Market Landscape of Startups
12.1.1. Analysis by Year of Establishment
12.1.2. Analysis by Company Size
12.1.3. Analysis by Company Size and Year of Establishment
12.1.4. Analysis by Location of Headquarters
12.1.5. Analysis by Company Size and Location of Headquarters
12.1.6. Analysis by Ownership Structure
12.2. Key Findings

SECTION IV: COMPANY PROFILES

13. COMPANY PROFILES
13.1. Chapter Overview
13.2. Aible*
13.2.1. Company Overview
13.2.2. Company Mission
13.2.3. Company Footprint
13.2.4. Management Team
13.2.5. Contact Details
13.2.6. Financial Performance
13.2.7. Operating Business Segments
13.2.8. Service / Product Portfolio (project specific)
13.2.9. MOAT Analysis
13.2.10. Recent Developments and Future Outlook

* similar detail is presented for other below mentioned companies based on information in the public domain

13.3. Aitia
13.4. Actable AI
13.5. Alibaba
13.6. Amazon Web Services
13.7. Amelia.ai
13.8. Beyond Limits
13.9. Biotx.ai
13.10. Blue Prism
13.11. Causa
13.12. Causality Link
13.13. Cognizant
13.14. Data Poem
13.15. DataRobot
13.16. Dataiku
13.17. IBM
13.18. Microsoft
13.19. NVIDIA
13.20. OpenAI

SECTION V: MARKET TRENDS

14. MEGA TRENDS ANALYSIS

15. UNMET NEED ANALYSIS

16. PATENT ANALYSIS

17. RECENT DEVELOPMENTS
17.1. Chapter Overview
17.2. Recent Funding
17.3. Recent Partnerships
17.4. Other Recent Initiatives

SECTION VI: MARKET OPPORTUNITY ANALYSIS

18. GLOBAL CAUSAL AI MARKET
18.1. Chapter Overview
18.2. Key Assumptions and Methodology
18.3. Trends Disruption Impacting Market
18.4. Demand Side Trends
18.5. Supply Side Trends
18.6. Global Causal AI Market, Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
18.7. Multivariate Scenario Analysis
18.7.1. Conservative Scenario
18.7.2. Optimistic Scenario
18.8. Investment Feasibility Index
18.9. Key Market Segmentations

19. MARKET OPPORTUNITIES BASED ON TYPE OF OFFERING
19.1. Chapter Overview
19.2. Key Assumptions and Methodology
19.3. Revenue Shift Analysis
19.4. Market Movement Analysis
19.5. Penetration-Growth (P-G) Matrix
19.6. Causal AI Market for Services: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
19.7. Causal AI Market for Software: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
19.8. Data Triangulation and Validation
19.8.1. Secondary Sources
19.8.2. Primary Sources
19.8.3. Statistical Modeling

20. MARKET OPPORTUNITIES BASED ON TYPE OF DEPLOYMENT MODE
20.1. Chapter Overview
20.2. Key Assumptions and Methodology
20.3. Revenue Shift Analysis
20.4. Market Movement Analysis
20.5. Penetration-Growth (P-G) Matrix
20.6. Causal AI Market for Cloud: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
20.7. Causal AI Market for Hybrid: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
20.8. Causal AI Market for On-Premises: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
20.9. Data Triangulation and Validation
20.9.1. Secondary Sources
20.9.2. Primary Sources
20.9.3. Statistical Modeling

21. MARKET OPPORTUNITIES BASED ON TYPE OF SERVICES
21.1. Chapter Overview
21.2. Key Assumptions and Methodology
21.3. Revenue Shift Analysis
21.4. Market Movement Analysis
21.5. Penetration-Growth (P-G) Matrix
21.6. Causal AI Market for Consulting: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
21.7. Causal AI Market for Deployment & Integration: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
21.8. Causal AI Market for Support and Maintenance: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
21.9. Causal AI Market for Training: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
21.10. Data Triangulation and Validation
21.10.1. Secondary Sources
21.10.2. Primary Sources
21.10.3. Statistical Modeling

22. MARKET OPPORTUNITIES BASED ON TYPE OF ANALYTICS
22.1. Chapter Overview
22.2. Key Assumptions and Methodology
22.3. Revenue Shift Analysis
22.4. Market Movement Analysis
22.5. Penetration-Growth (P-G) Matrix
22.6. Causal AI Market for Descriptive Analytics: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
22.7. Causal AI Market for Predictive Analytics: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
22.8. Causal AI Market for Prescriptive Analytics: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
22.9. Data Triangulation and Validation
22.9.1. Secondary Sources
22.9.2. Primary Sources
22.9.3. Statistical Modeling

23. MARKET OPPORTUNITIES BASED ON TYPE OF TECHNOLOGY
23.1. Chapter Overview
23.2. Key Assumptions and Methodology
23.3. Revenue Shift Analysis
23.4. Market Movement Analysis
23.5. Penetration-Growth (P-G) Matrix
23.6. Causal AI Market for Computer Vision: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
23.7. Causal AI Market for Deep Learning: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
23.8. Causal AI Market for Machine Learning: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
23.9. Causal AI Market for Natural Language Processing: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
23.10. Data Triangulation and Validation
23.10.1. Secondary Sources
23.10.2. Primary Sources
23.10.3. Statistical Modeling

24. MARKET OPPORTUNITIES BASED ON TYPE OF COMPONENT
24.1. Chapter Overview
24.2. Key Assumptions and Methodology
24.3. Revenue Shift Analysis
24.4. Market Movement Analysis
24.5. Penetration-Growth (P-G) Matrix
24.6. Causal AI Market for Algorithms: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
24.7. Causal AI Market for Frameworks: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
24.8. Causal AI Market for Libraries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
24.9. Data Triangulation and Validation
24.9.1. Secondary Sources
24.9.2. Primary Sources
24.9.3. Statistical Modeling

25. MARKET OPPORTUNITIES BASED ON AREAS OF APPLICATION
25.1. Chapter Overview
25.2. Key Assumptions and Methodology
25.3. Revenue Shift Analysis
25.4. Market Movement Analysis
25.5. Penetration-Growth (P-G) Matrix
25.6. Causal AI Market for Customer Experience Management: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.7. Causal AI Market for Fraud Detection: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.8. Causal AI Market for Healthcare Diagnostics: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.9. Causal AI Market for Marketing Optimization: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.10. Causal AI Market for Predictive Maintenance: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.11. Causal AI Market for Risk Management: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.12. Causal AI Market for Supply Chain Optimization: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
25.13. Data Triangulation and Validation
25.13.1. Secondary Sources
25.13.2. Primary Sources
25.13.3. Statistical Modeling

26. MARKET OPPORTUNITIES BASED ON TYPE OF FUNCTIONALITY
26.1. Chapter Overview
26.2. Key Assumptions and Methodology
26.3. Revenue Shift Analysis
26.4. Market Movement Analysis
26.5. Penetration-Growth (P-G) Matrix
26.6. Causal AI Market for Causal Discovery: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
26.7. Causal AI Market for Causal Inference: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
26.8. Causal AI Market for Counterfactual Analysis: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
26.9. Data Triangulation and Validation
26.9.1. Secondary Sources
26.9.2. Primary Sources
26.9.3. Statistical Modeling

27. MARKET OPPORTUNITIES BASED ON TYPE OF INDUSTRY VERTICAL
27.1. Chapter Overview
27.2. Key Assumptions and Methodology
27.3. Revenue Shift Analysis
27.4. Market Movement Analysis
27.5. Penetration-Growth (P-G) Matrix
27.6. Causal AI Market for BFSI: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.7. Causal AI Market for Financial Services: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.8. Causal AI Market for Healthcare: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.9. Causal AI Market for Manufacturing: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.10. Causal AI Market for Retail: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.11. Causal AI Market for Transportation & Logistics: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
27.12. Data Triangulation and Validation
27.12.1. Secondary Sources
27.12.2. Primary Sources
27.12.3. Statistical Modeling

28. MARKET OPPORTUNITIES FOR CAUSAL AI IN NORTH AMERICA
28.1. Chapter Overview
28.2. Key Assumptions and Methodology
28.3. Revenue Shift Analysis
28.4. Market Movement Analysis
28.5. Penetration-Growth (P-G) Matrix
28.6. Causal AI Market in North America: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
28.6.1. Causal AI Market in the US: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
28.6.2. Causal AI Market in Canada: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
28.6.3. Causal AI Market in Mexico: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
28.6.4. Causal AI Market in Other North American Countries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
28.7. Data Triangulation and Validation

29. MARKET OPPORTUNITIES FOR CAUSAL AI IN EUROPE
29.1. Chapter Overview
29.2. Key Assumptions and Methodology
29.3. Revenue Shift Analysis
29.4. Market Movement Analysis
29.5. Penetration-Growth (P-G) Matrix
29.6. Causal AI Market in Europe: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.1. Causal AI Market in Austria: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.2. Causal AI Market in Belgium: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.3. Causal AI Market in Denmark: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.4. Causal AI Market in France: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.5. Causal AI Market in Germany: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.6. Causal AI Market in Ireland: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.7. Causal AI Market in Italy: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.8. Causal AI Market in Netherlands: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.9. Causal AI Market in Norway: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.10. Causal AI Market in Russia: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.11. Causal AI Market in Spain: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.12. Causal AI Market in Sweden: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.13. Causal AI Market in Sweden: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.14. Causal AI Market in Switzerland: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.15. Causal AI Market in the UK: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.6.16. Causal AI Market in Other European Countries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
29.7. Data Triangulation and Validation

30. MARKET OPPORTUNITIES FOR CAUSAL AI IN ASIA
30.1. Chapter Overview
30.2. Key Assumptions and Methodology
30.3. Revenue Shift Analysis
30.4. Market Movement Analysis
30.5. Penetration-Growth (P-G) Matrix
30.6. Causal AI Market in Asia: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.1. Causal AI Market in China: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.2. Causal AI Market in India: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.3. Causal AI Market in Japan: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.4. Causal AI Market in Singapore: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.5. Causal AI Market in South Korea: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.6.6. Causal AI Market in Other Asian Countries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
30.7. Data Triangulation and Validation

31. MARKET OPPORTUNITIES FOR CAUSAL AI IN MIDDLE EAST AND NORTH AFRICA (MENA)
31.1. Chapter Overview
31.2. Key Assumptions and Methodology
31.3. Revenue Shift Analysis
31.4. Market Movement Analysis
31.5. Penetration-Growth (P-G) Matrix
31.6. Causal AI Market in Middle East and North Africa (MENA): Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.1. Causal AI Market in Egypt: Historical Trends (Since 2020) and Forecasted Estimates (Till 205)
31.6.2. Causal AI Market in Iran: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.3. Causal AI Market in Iraq: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.4. Causal AI Market in Israel: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.5. Causal AI Market in Kuwait: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.6. Causal AI Market in Saudi Arabia: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.7. Causal AI Market in United Arab Emirates (UAE): Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.6.8. Causal AI Market in Other MENA Countries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
31.7. Data Triangulation and Validation

32. MARKET OPPORTUNITIES FOR CAUSAL AI IN LATIN AMERICA
32.1. Chapter Overview
32.2. Key Assumptions and Methodology
32.3. Revenue Shift Analysis
32.4. Market Movement Analysis
32.5. Penetration-Growth (P-G) Matrix
32.6. Causal AI Market in Latin America: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.1. Causal AI Market in Argentina: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.2. Causal AI Market in Brazil: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.3. Causal AI Market in Chile: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.4. Causal AI Market in Colombia Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.5. Causal AI Market in Venezuela: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.6.6. Causal AI Market in Other Latin American Countries: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
32.7. Data Triangulation and Validation

33. MARKET OPPORTUNITIES FOR CAUSAL AI IN REST OF THE WORLD
33.1. Chapter Overview
33.2. Key Assumptions and Methodology
33.3. Revenue Shift Analysis
33.4. Market Movement Analysis
33.5. Penetration-Growth (P-G) Matrix
33.6. Causal AI Market in Rest of the World: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
33.6.1. Causal AI Market in Australia: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
33.6.2. Causal AI Market in New Zealand: Historical Trends (Since 2020) and Forecasted Estimates (Till 2035)
33.6.3. Causal AI Market in Other Countries
33.7. Data Triangulation and Validation

34. MARKET CONCENTRATION ANALYSIS: DISTRIBUTION BY LEADING PLAYERS
34.1. Leading Player 1
34.2. Leading Player 2
34.3. Leading Player 3
34.4. Leading Player 4
34.5. Leading Player 5
34.6. Leading Player 6
34.7. Leading Player 7
34.8. Leading Player 8

35. ADJACENT MARKET ANALYSIS

SECTION VII: STRATEGIC TOOLS

36. KEY WINNING STRATEGIES

37. PORTER'S FIVE FORCES ANALYSIS

38. SWOT ANALYSIS

39. VALUE CHAIN ANALYSIS

40. ROOTS STRATEGIC RECOMMENDATIONS
40.1. Chapter Overview
40.2. Key Business-related Strategies
40.2.1. Research & Development
40.2.2. Product Manufacturing
40.2.3. Commercialization / Go-to-Market
40.2.4. Sales and Marketing
40.3. Key Operations-related Strategies
40.3.1. Risk Management
40.3.2. Workforce
40.3.3. Finance
40.3.4. Others

SECTION VIII: OTHER EXCLUSIVE INSIGHTS

41. INSIGHTS FROM PRIMARY RESEARCH
42. REPORT CONCLUSION

SECTION IX: APPENDIX
43. TABULATED DATA
44. LIST OF COMPANIES AND ORGANIZATIONS
45. CUSTOMIZATION OPPORTUNITIES
46. ROOTS SUBSCRIPTION SERVICES
47. AUTHOR DETAILS

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります


よくあるご質問


Roots Analysis社はどのような調査会社ですか?


Roots Analysisは2013年設立の医薬品・医療機器が専門の調査会社です。 医薬品の製造委託や創薬のデジタル化など、最新の医薬業界の分析を行っています。 もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。


詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

 

2025/12/26 10:26

157.51 円

185.98 円

215.46 円

ページTOPに戻る