世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Ai In Fraud Management Market Outlook 2025-2034: Market Share, and Growth Analysis By Solution (AI-Powered Fraud Prevention Software, Services), By Enterprise Size ( Small and Medium Enterprises (SMEs), Large Enterprises), By Application, By Industry

Ai In Fraud Management Market Outlook 2025-2034: Market Share, and Growth Analysis By Solution (AI-Powered Fraud Prevention Software, Services), By Enterprise Size ( Small and Medium Enterprises (SMEs), Large Enterprises), By Application, By Industry


The Ai In Fraud Management Market is valued at USD 13.2 billion in 2025 and is projected to grow at a CAGR of 16.2% to reach USD 51 billion by 2034. Artificial Intelligence (AI) is revolutionizing ... もっと見る

 

 

出版社 出版年月 電子版価格 納期 言語
OG Analysis
オージーアナリシス
2025年10月16日 US$3,950
シングルユーザライセンス
ライセンス・価格情報
注文方法はこちら
通常3-4営業日以内 英語

※当ページの内容はウェブ更新時の情報です。
最新版の価格やページ数などの情報についてはお問合せください。

日本語のページは自動翻訳を利用し作成しています。
実際のレポートは英文のみでご納品いたします。


 

Summary

The Ai In Fraud Management Market is valued at USD 13.2 billion in 2025 and is projected to grow at a CAGR of 16.2% to reach USD 51 billion by 2034.

Artificial Intelligence (AI) is revolutionizing fraud management by providing advanced detection, prevention, and response capabilities across industries such as banking, e-commerce, healthcare, and insurance. Traditional fraud detection methods often struggle to keep up with the evolving sophistication of cybercriminals. AI-powered fraud management systems leverage machine learning, deep learning, and behavioral analytics to detect anomalies, identify suspicious activities, and prevent fraudulent transactions in real time. These systems analyze vast amounts of data from multiple sources, including transaction patterns, user behavior, and historical fraud records, to enhance accuracy and minimize false positives. Businesses are increasingly adopting AI-driven fraud management solutions to safeguard financial assets, protect sensitive customer information, and comply with regulatory requirements. With the rise of digital transactions and financial technology (fintech) innovations, the need for AI-powered fraud prevention has never been more critical. As cyber threats continue to evolve, organizations are turning to AI-driven models that continuously learn and adapt, ensuring a proactive approach to fraud detection.

AI-driven fraud management solutions saw significant advancements, particularly in real-time transaction monitoring, biometric authentication, and deepfake detection. Financial institutions integrated AI-powered risk scoring models that could instantly assess the likelihood of fraud based on behavioral patterns, geolocation data, and device fingerprints. E-commerce platforms increasingly deployed AI-based anomaly detection to prevent chargeback fraud, synthetic identity fraud, and credential stuffing attacks. AI-driven chatbots and virtual fraud analysts played a key role in customer interactions, identifying suspicious account activities and flagging potential threats before they escalated. Another major development was the use of AI in fighting deepfake-related fraud, where generative adversarial networks (GANs) were used to detect manipulated media and prevent identity theft. Governments and regulatory bodies also encouraged AI-driven compliance solutions, helping businesses meet evolving anti-money laundering (AML) and Know Your Customer (KYC) requirements. Cybercriminals, however, responded with more sophisticated AI-powered fraud tactics, leading to a constant battle between security professionals and malicious actors. The year also saw greater collaboration between AI startups and established financial institutions, driving innovation in fraud detection and response mechanisms.

The AI is expected to become even more deeply embedded in fraud management strategies, with predictive AI models becoming standard across industries. The adoption of self-learning AI algorithms will enhance fraud prevention by identifying emerging fraud patterns before they become widespread threats. AI-driven behavioral biometrics will play a larger role in authentication, making it harder for fraudsters to impersonate legitimate users. The integration of AI with blockchain technology is also expected to improve fraud prevention in financial transactions, enhancing transparency and security. Automated AI-driven compliance tools will streamline regulatory adherence, reducing the burden on financial institutions and ensuring real-time compliance with global fraud prevention standards. Additionally, advancements in federated learning will enable companies to share anonymized fraud intelligence without compromising sensitive user data, strengthening collective fraud defense mechanisms. The market will see increasing investment in AI-based cybersecurity, as organizations look to counter AI-driven fraud attacks with equally advanced AI-powered defenses. However, ethical concerns around AI’s decision-making processes and bias in fraud detection algorithms will need to be addressed to ensure fair and effective fraud management.

Key Insights_ Ai In Fraud Management Market

  • Real-Time AI-Powered Fraud Detection: Businesses are prioritizing real-time fraud detection using AI-driven algorithms that analyze transactions instantly. AI models continuously learn from new fraud patterns, allowing organizations to identify and block fraudulent activities before they result in financial losses.
  • AI-Enhanced Biometric Authentication: The use of AI in facial recognition, voice recognition, and fingerprint analysis is improving fraud prevention. AI-driven biometric authentication makes it difficult for fraudsters to use stolen credentials, reducing identity theft and account takeovers.
  • Deepfake and Synthetic Identity Fraud Prevention: AI is being deployed to detect deepfake videos, manipulated images, and synthetic identities used for fraudulent activities. Advanced AI models analyze facial movements, voice inconsistencies, and digital artifacts to identify fake content in real-time.
  • AI-Driven Risk Scoring Models: Businesses are leveraging AI-powered risk scoring systems to assess fraud probability based on user behavior, transaction history, and device attributes. These models allow organizations to approve or flag transactions dynamically, reducing fraud while minimizing disruptions for genuine users.
  • Federated Learning for Fraud Intelligence Sharing: AI-driven federated learning enables organizations to collaborate on fraud prevention by sharing anonymized data insights across industries. This decentralized approach enhances fraud detection while maintaining data privacy and regulatory compliance.
  • Rise in Digital Transactions and Online Fraud: The rapid growth of e-commerce, fintech, and digital banking has increased the risk of fraud. AI-driven fraud management solutions help businesses combat cyber threats by identifying suspicious activities and preventing unauthorized transactions in real-time.
  • Increasing Regulatory Compliance Requirements: Governments worldwide are enforcing stricter fraud prevention regulations, including anti-money laundering (AML) and Know Your Customer (KYC) standards. AI-powered compliance tools help businesses meet these requirements efficiently while reducing manual processing efforts.
  • Advancements in AI and Machine Learning Algorithms: Continuous improvements in AI models, including deep learning and neural networks, have enhanced fraud detection capabilities. These AI systems can analyze vast datasets, recognize fraudulent patterns, and adapt to new threats with minimal human intervention.
  • Growing Sophistication of Fraud Tactics: Cybercriminals are leveraging AI and automation to launch more advanced fraud attacks. Organizations are adopting AI-driven fraud prevention strategies to stay ahead of evolving threats and minimize financial risks.
  • Ethical and Bias Concerns in AI-Based Fraud Detection: While AI improves fraud detection accuracy, concerns over algorithmic bias and fairness remain a challenge. AI models trained on biased datasets may result in false positives or discrimination, requiring ongoing oversight to ensure ethical and transparent fraud prevention practices.

Ai In Fraud Management Market Segmentation

By Solution
  • AI-Powered Fraud Prevention Software
  • Services

    By Enterprise Size
  • Small and Medium Enterprises (SMEs)
  • Large Enterprises

    By Application
  • Identity Theft Protection
  • Payment Fraud Prevention
  • Anti-Money Laundering
  • Other Applications

    By Industry
  • Banking
  • Financial Services and Insurance
  • IT And Telecom
  • Healthcare
  • Government
  • Education
  • Retail And Consumer packaged goods (CPG)
  • Media And Entertainment
  • Other Industries

    Key Companies Analysed

  • Trusteer
  • Hewlett Packard Enterprise
  • BAE Systems plc
  • Capgemini SE
  • Cognizant Technology Solutions India Private Limited.
  • SAS Institute Inc.
  • Splunk Inc.
  • Temenos AG
  • Shift Technology SAS
  • Pelican Products Inc.
  • Riskified Ltd.
  • NICE Actimize Inc.
  • Jumio Corp.
  • Onfido Ltd.
  • Subex Limited
  • BehavioSec Inc.
  • Arxan Technologies Inc.
  • Socure Inc.
  • ACTICO GmbH
  • BioConnect Inc.
  • Matellio Inc.
  • MaxMind Inc.
  • Zest AI Inc.
  • Chargeback.com Inc.
  • Brighterion Inc.

    Ai In Fraud Management Market Analytics

    The report employs rigorous tools, including Porter’s Five Forces, value chain mapping, and scenario-based modeling, to assess supply–demand dynamics. Cross-sector influences from parent, derived, and substitute markets are evaluated to identify risks and opportunities. Trade and pricing analytics provide an up-to-date view of international flows, including leading exporters, importers, and regional price trends. Macroeconomic indicators, policy frameworks such as carbon pricing and energy security strategies, and evolving consumer behavior are considered in forecasting scenarios. Recent deal flows, partnerships, and technology innovations are incorporated to assess their impact on future market performance.

    Ai In Fraud Management Market Competitive Intelligence

    The competitive landscape is mapped through OG Analysis’ proprietary frameworks, profiling leading companies with details on business models, product portfolios, financial performance, and strategic initiatives. Key developments such as mergers & acquisitions, technology collaborations, investment inflows, and regional expansions are analyzed for their competitive impact. The report also identifies emerging players and innovative startups contributing to market disruption. Regional insights highlight the most promising investment destinations, regulatory landscapes, and evolving partnerships across energy and industrial corridors.

    Countries Covered

    • North America — Ai In Fraud Management market data and outlook to 2034
      • United States
      • Canada
      • Mexico
    • Europe — Ai In Fraud Management market data and outlook to 2034
      • Germany
      • United Kingdom
      • France
      • Italy
      • Spain
      • BeNeLux
      • Russia
      • Sweden
    • Asia-Pacific — Ai In Fraud Management market data and outlook to 2034
      • China
      • Japan
      • India
      • South Korea
      • Australia
      • Indonesia
      • Malaysia
      • Vietnam
    • Middle East and Africa — Ai In Fraud Management market data and outlook to 2034
      • Saudi Arabia
      • South Africa
      • Iran
      • UAE
      • Egypt
    • South and Central America — Ai In Fraud Management market data and outlook to 2034
      • Brazil
      • Argentina
      • Chile
      • Peru

    * We can include data and analysis of additional countries on demand.

    Research Methodology

    This study combines primary inputs from industry experts across the Ai In Fraud Management value chain with secondary data from associations, government publications, trade databases, and company disclosures. Proprietary modeling techniques, including data triangulation, statistical correlation, and scenario planning, are applied to deliver reliable market sizing and forecasting.

    Key Questions Addressed

  • What is the current and forecast market size of the Ai In Fraud Management industry at global, regional, and country levels?
  • Which types, applications, and technologies present the highest growth potential?
  • How are supply chains adapting to geopolitical and economic shocks?
  • What role do policy frameworks, trade flows, and sustainability targets play in shaping demand?
  • Who are the leading players, and how are their strategies evolving in the face of global uncertainty?
  • Which regional “hotspots” and customer segments will outpace the market, and what go-to-market and partnership models best support entry and expansion?
  • Where are the most investable opportunities—across technology roadmaps, sustainability-linked innovation, and M&A—and what is the best segment to invest over the next 3–5 years?

    Your Key Takeaways from the Ai In Fraud Management Market Report

    • Global Ai In Fraud Management market size and growth projections (CAGR), 2024-2034
    • Impact of Russia-Ukraine, Israel-Palestine, and Hamas conflicts on Ai In Fraud Management trade, costs, and supply chains
    • Ai In Fraud Management market size, share, and outlook across 5 regions and 27 countries, 2023-2034
    • Ai In Fraud Management market size, CAGR, and market share of key products, applications, and end-user verticals, 2023-2034
    • Short- and long-term Ai In Fraud Management market trends, drivers, restraints, and opportunities
    • Porter’s Five Forces analysis, technological developments, and Ai In Fraud Management supply chain analysis
    • Ai In Fraud Management trade analysis, Ai In Fraud Management market price analysis, and Ai In Fraud Management supply/demand dynamics
    • Profiles of 5 leading companies—overview, key strategies, financials, and products
    • Latest Ai In Fraud Management market news and developments

    Additional Support

    With the purchase of this report, you will receive
    • An updated PDF report and an MS Excel data workbook containing all market tables and figures for easy analysis.
    • 7-day post-sale analyst support for clarifications and in-scope supplementary data, ensuring the deliverable aligns precisely with your requirements.
    • Complimentary report update to incorporate the latest available data and the impact of recent market developments.
    * The updated report will be delivered within 3 working days

    ページTOPに戻る


    Table of Contents

    1. Table of Contents
    1.1 List of Tables
    1.2 List of Figures

    2. Global Ai In Fraud Management Market Summary, 2025
    2.1 Ai In Fraud Management Industry Overview
    2.1.1 Global Ai In Fraud Management Market Revenues (In US$ billion)
    2.2 Ai In Fraud Management Market Scope
    2.3 Research Methodology

    3. Ai In Fraud Management Market Insights, 2024-2034
    3.1 Ai In Fraud Management Market Drivers
    3.2 Ai In Fraud Management Market Restraints
    3.3 Ai In Fraud Management Market Opportunities
    3.4 Ai In Fraud Management Market Challenges
    3.5 Tariff Impact on Global Ai In Fraud Management Supply Chain Patterns

    4. Ai In Fraud Management Market Analytics
    4.1 Ai In Fraud Management Market Size and Share, Key Products, 2025 Vs 2034
    4.2 Ai In Fraud Management Market Size and Share, Dominant Applications, 2025 Vs 2034
    4.3 Ai In Fraud Management Market Size and Share, Leading End Uses, 2025 Vs 2034
    4.4 Ai In Fraud Management Market Size and Share, High Growth Countries, 2025 Vs 2034
    4.5 Five Forces Analysis for Global Ai In Fraud Management Market
    4.5.1 Ai In Fraud Management Industry Attractiveness Index, 2025
    4.5.2 Ai In Fraud Management Supplier Intelligence
    4.5.3 Ai In Fraud Management Buyer Intelligence
    4.5.4 Ai In Fraud Management Competition Intelligence
    4.5.5 Ai In Fraud Management Product Alternatives and Substitutes Intelligence
    4.5.6 Ai In Fraud Management Market Entry Intelligence

    5. Global Ai In Fraud Management Market Statistics – Industry Revenue, Market Share, Growth Trends and Forecast by segments, to 2034
    5.1 World Ai In Fraud Management Market Size, Potential and Growth Outlook, 2024- 2034 ($ billion)
    5.1 Global Ai In Fraud Management Sales Outlook and CAGR Growth By Solution, 2024- 2034 ($ billion)
    5.2 Global Ai In Fraud Management Sales Outlook and CAGR Growth By Enterprise Size, 2024- 2034 ($ billion)
    5.3 Global Ai In Fraud Management Sales Outlook and CAGR Growth By Application, 2024- 2034 ($ billion)
    5.4 Global Ai In Fraud Management Sales Outlook and CAGR Growth By Industry, 2024- 2034 ($ billion)
    5.5 Global Ai In Fraud Management Market Sales Outlook and Growth by Region, 2024- 2034 ($ billion)

    6. Asia Pacific Ai In Fraud Management Industry Statistics – Market Size, Share, Competition and Outlook
    6.1 Asia Pacific Ai In Fraud Management Market Insights, 2025
    6.2 Asia Pacific Ai In Fraud Management Market Revenue Forecast By Solution, 2024- 2034 (USD billion)
    6.3 Asia Pacific Ai In Fraud Management Market Revenue Forecast By Enterprise Size, 2024- 2034 (USD billion)
    6.4 Asia Pacific Ai In Fraud Management Market Revenue Forecast By Application, 2024- 2034 (USD billion)
    6.5 Asia Pacific Ai In Fraud Management Market Revenue Forecast By Industry, 2024- 2034 (USD billion)
    6.6 Asia Pacific Ai In Fraud Management Market Revenue Forecast by Country, 2024- 2034 (USD billion)
    6.6.1 China Ai In Fraud Management Market Size, Opportunities, Growth 2024- 2034
    6.6.2 India Ai In Fraud Management Market Size, Opportunities, Growth 2024- 2034
    6.6.3 Japan Ai In Fraud Management Market Size, Opportunities, Growth 2024- 2034
    6.6.4 Australia Ai In Fraud Management Market Size, Opportunities, Growth 2024- 2034

    7. Europe Ai In Fraud Management Market Data, Penetration, and Business Prospects to 2034
    7.1 Europe Ai In Fraud Management Market Key Findings, 2025
    7.2 Europe Ai In Fraud Management Market Size and Percentage Breakdown By Solution, 2024- 2034 (USD billion)
    7.3 Europe Ai In Fraud Management Market Size and Percentage Breakdown By Enterprise Size, 2024- 2034 (USD billion)
    7.4 Europe Ai In Fraud Management Market Size and Percentage Breakdown By Application, 2024- 2034 (USD billion)
    7.5 Europe Ai In Fraud Management Market Size and Percentage Breakdown By Industry, 2024- 2034 (USD billion)
    7.6 Europe Ai In Fraud Management Market Size and Percentage Breakdown by Country, 2024- 2034 (USD billion)
    7.6.1 Germany Ai In Fraud Management Market Size, Trends, Growth Outlook to 2034
    7.6.2 United Kingdom Ai In Fraud Management Market Size, Trends, Growth Outlook to 2034
    7.6.2 France Ai In Fraud Management Market Size, Trends, Growth Outlook to 2034
    7.6.2 Italy Ai In Fraud Management Market Size, Trends, Growth Outlook to 2034
    7.6.2 Spain Ai In Fraud Management Market Size, Trends, Growth Outlook to 2034

    8. North America Ai In Fraud Management Market Size, Growth Trends, and Future Prospects to 2034
    8.1 North America Snapshot, 2025
    8.2 North America Ai In Fraud Management Market Analysis and Outlook By Solution, 2024- 2034 ($ billion)
    8.3 North America Ai In Fraud Management Market Analysis and Outlook By Enterprise Size, 2024- 2034 ($ billion)
    8.4 North America Ai In Fraud Management Market Analysis and Outlook By Application, 2024- 2034 ($ billion)
    8.5 North America Ai In Fraud Management Market Analysis and Outlook By Industry, 2024- 2034 ($ billion)
    8.6 North America Ai In Fraud Management Market Analysis and Outlook by Country, 2024- 2034 ($ billion)
    8.6.1 United States Ai In Fraud Management Market Size, Share, Growth Trends and Forecast, 2024- 2034
    8.6.1 Canada Ai In Fraud Management Market Size, Share, Growth Trends and Forecast, 2024- 2034
    8.6.1 Mexico Ai In Fraud Management Market Size, Share, Growth Trends and Forecast, 2024- 2034

    9. South and Central America Ai In Fraud Management Market Drivers, Challenges, and Future Prospects
    9.1 Latin America Ai In Fraud Management Market Data, 2025
    9.2 Latin America Ai In Fraud Management Market Future By Solution, 2024- 2034 ($ billion)
    9.3 Latin America Ai In Fraud Management Market Future By Enterprise Size, 2024- 2034 ($ billion)
    9.4 Latin America Ai In Fraud Management Market Future By Application, 2024- 2034 ($ billion)
    9.5 Latin America Ai In Fraud Management Market Future By Industry, 2024- 2034 ($ billion)
    9.6 Latin America Ai In Fraud Management Market Future by Country, 2024- 2034 ($ billion)
    9.6.1 Brazil Ai In Fraud Management Market Size, Share and Opportunities to 2034
    9.6.2 Argentina Ai In Fraud Management Market Size, Share and Opportunities to 2034

    10. Middle East Africa Ai In Fraud Management Market Outlook and Growth Prospects
    10.1 Middle East Africa Overview, 2025
    10.2 Middle East Africa Ai In Fraud Management Market Statistics By Solution, 2024- 2034 (USD billion)
    10.3 Middle East Africa Ai In Fraud Management Market Statistics By Enterprise Size, 2024- 2034 (USD billion)
    10.4 Middle East Africa Ai In Fraud Management Market Statistics By Application, 2024- 2034 (USD billion)
    10.5 Middle East Africa Ai In Fraud Management Market Statistics By Application, 2024- 2034 (USD billion)
    10.6 Middle East Africa Ai In Fraud Management Market Statistics by Country, 2024- 2034 (USD billion)
    10.6.1 Middle East Ai In Fraud Management Market Value, Trends, Growth Forecasts to 2034
    10.6.2 Africa Ai In Fraud Management Market Value, Trends, Growth Forecasts to 2034

    11. Ai In Fraud Management Market Structure and Competitive Landscape
    11.1 Key Companies in Ai In Fraud Management Industry
    11.2 Ai In Fraud Management Business Overview
    11.3 Ai In Fraud Management Product Portfolio Analysis
    11.4 Financial Analysis
    11.5 SWOT Analysis

    12 Appendix
    12.1 Global Ai In Fraud Management Market Volume (Tons)
    12.1 Global Ai In Fraud Management Trade and Price Analysis
    12.2 Ai In Fraud Management Parent Market and Other Relevant Analysis
    12.3 Publisher Expertise
    12.2 Ai In Fraud Management Industry Report Sources and Methodology
  •  

    ページTOPに戻る

    ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

    webからのご注文・お問合せはこちらのフォームから承ります

    本レポートと同分野(通信・IT)の最新刊レポート

    OG Analysis社の 情報技術・メディア分野 での最新刊レポート

    本レポートと同じKEY WORD(ai)の最新刊レポート


    よくあるご質問


    OG Analysis社はどのような調査会社ですか?


    OG Analysisは、10年以上の専門知識を持ち、半導体、エネルギー、化学品、自動車、農業など多様な市場調査レポートを出版しています。また広範な市場を対象としたカスタム調査も行っています。 もっと見る


    調査レポートの納品までの日数はどの程度ですか?


    在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
    但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
    発注をする前のお問合せをお願いします。


    注文の手続きはどのようになっていますか?


    1)お客様からの御問い合わせをいただきます。
    2)見積書やサンプルの提示をいたします。
    3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
    4)データリソース社からレポート発行元の調査会社へ納品手配します。
    5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


    お支払方法の方法はどのようになっていますか?


    納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
    お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
    請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
    お客様の御支払い条件が60日以上の場合は御相談ください。
    尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


    データリソース社はどのような会社ですか?


    当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
    世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
    お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。


    詳細検索

    このレポートへのお問合せ

    03-3582-2531

    電話お問合せもお気軽に

     

     

    2025/11/20 10:26

    158.29 円

    182.84 円

    209.31 円

    ページTOPに戻る