世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

米国ヘルスケアにおける人工知能(AI)市場予測 2024-2032

米国ヘルスケアにおける人工知能(AI)市場予測 2024-2032


UNITED STATES ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET FORECAST 2024-2032

主な調査結果 米国のヘルスケアにおける人工知能(AI)市場は、予測期間2024-2032年にCAGR 35.90%で成長すると予測される。AI導入を支える大量の医療データ、AI・機械学習スタートアップ企業の増加、臨床意思決... もっと見る

 

 

出版社 出版年月 電子版価格 納期 ページ数 言語
Inkwood Research
インクウッドリサーチ
2024年3月13日 US$1,100
シングルユーザライセンス(印刷不可)
ライセンス・価格情報
注文方法はこちら
2-3営業日以内 117 英語

 

サマリー

主な調査結果
米国のヘルスケアにおける人工知能(AI)市場は、予測期間2024-2032年にCAGR 35.90%で成長すると予測される。AI導入を支える大量の医療データ、AI・機械学習スタートアップ企業の増加、臨床意思決定のための検査における個別化医療の出現、AIによるリアルタイムモニタリングシステムの構築など、いくつかの要因が市場成長を高めている。
市場インサイト
米国のヘルスケアにおける人工知能(AI)市場は、利用可能な膨大なヘルスケアデータが大きな要因となって、実質的な成長を遂げている。患者記録、診断画像、その他の医療情報のデジタル化が進む中、意思決定の強化や個別化された患者ケアに活用できる豊富なデータがAIの採用を後押ししている。この豊富な情報は、より正確な診断を容易にし、革新的なAIアプリケーションの開発に貢献している。
医療データの急増とは別に、市場ではAIや機械学習の新興企業が急増している。これらの新興企業は、イノベーションを推進し、ヘルスケア分野におけるAI技術の統合を促進する上で不可欠な存在である。新興企業の増加は市場に活力を吹き込み、競争を促し、さまざまな医療課題に対処するために設計された多様なAIアプリケーションの創造につながっている。この傾向は、ヘルスケアにおけるAIの進化を加速させ、継続的な進歩を促す競争的な市場環境を促進する上で重要な役割を担っている。
有望な成長にもかかわらず、米国のヘルスケアにおける人工知能(AI)市場では、データ・セキュリティの維持に課題が残っている。医療システムの相互接続性と膨大な量の機密性の高い患者情報への依存は、潜在的なデータ侵害とプライバシーの問題に対する懸念を高めている。医療分野では、患者データのセキュリティを確保することが最も重要です。市場は、AIシステムによって処理される情報の機密性と完全性を保証するために、強力なサイバーセキュリティ対策を導入するという複雑な課題に直面している。こうした課題に対処することは、医療従事者、患者、利害関係者の信頼を築き、医療における人工知能(AI)の責任ある持続的な発展を高めるために不可欠である。
競合他社の洞察
米国のヘルスケアにおける人工知能(AI)市場の主要企業には、Enlitic Inc、Deep Genomics Inc、Google、IBM Corporationなどがあります。
弊社のレポート提供内容は以下の通りです:
- 市場全体の主要調査結果を探る
- 市場ダイナミクスの戦略的内訳(促進要因、抑制要因、機会、課題)
- 全セグメント、サブセグメント、地域の3年間の過去データとともに、最低9年間の市場予測
- 市場セグメンテーション:主要セグメントの徹底的な評価と市場予測
- 地域別分析:言及された地域と国レベルのセグメントを市場シェアとともに評価
- 主要分析:ポーターのファイブフォース分析、ベンダーランドスケープ、オポチュニティマトリックス、主要購買基準など。
- 競合環境は、市場シェアなどの要因に基づいて主要企業を理論的に説明したものです。
- 企業プロファイリング:詳細な会社概要、提供する製品・サービス、SCOT分析、最近の戦略的展開など

ページTOPに戻る


目次

TABLE OF CONTENTS
1. RESEARCH SCOPE & METHODOLOGY
1.1. STUDY OBJECTIVES
1.2. METHODOLOGY
1.3. ASSUMPTIONS & LIMITATIONS
2. EXECUTIVE SUMMARY
2.1. MARKET SIZE & ESTIMATES
2.2. COUNTRY SNAPSHOT
2.3. COUNTRY ANALYSIS
2.4. SCOPE OF STUDY
2.5. CRISIS SCENARIO ANALYSIS
2.6. MAJOR MARKET FINDINGS
2.6.1. SOFTWARE OFFERING IS LEADING THE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET, DRIVING INNOVATION AND EFFICIENCY
2.6.2. NATURAL LANGUAGE PROCESSING DOMINATING ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE TECHNOLOGY
2.6.3. HEALTHCARE PROVIDERS ARE THE MAJOR USERS OF ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE
2.6.4. DOSAGE ERROR REDUCTION IS THE FASTEST-GROWING APPLICATION
3. MARKET DYNAMICS
3.1. KEY DRIVERS
3.1.1. LARGE VOLUMES OF HEALTHCARE DATA SUPPORTING THE ADOPTION OF AI
3.1.2. GROWING NUMBER OF AI AND MACHINE LEARNING START-UPS
3.1.3. EMERGENCE OF PERSONALIZED MEDICINE IN TESTS FOR CLINICAL DECISION-MAKING
3.1.4. AI CREATING A REAL-TIME MONITORING SYSTEM
3.2. KEY RESTRAINTS
3.2.1. CHALLENGES IN MAINTAINING DATA SECURITY
3.2.2. COST CONSTRAINTS AND LOW RETURN ON INVESTMENT (ROI)
4. KEY ANALYTICS
4.1. KEY MARKET TRENDS
4.1.1. WIDENING APPLICATIONS OF AI IN THE HEALTHCARE INDUSTRY
4.1.2. INCREASING DEMAND FOR AI IN DRUG DISCOVERY
4.1.3. HIGH EMPHASIS ON THE DEVELOPMENT OF PRECISION MEDICINE AND PERSONALIZED DRUGS
4.1.4. INCREASING USE OF AI IN GENETICS
4.1.5. AI CREATING A REAL-TIME MONITORING SYSTEM
4.2. PESTLE ANALYSIS
4.2.1. POLITICAL
4.2.2. ECONOMICAL
4.2.3. SOCIAL
4.2.4. TECHNOLOGICAL
4.2.5. LEGAL
4.2.6. ENVIRONMENTAL
4.3. PORTER’S FIVE FORCES ANALYSIS
4.3.1. BUYERS POWER
4.3.2. SUPPLIERS POWER
4.3.3. SUBSTITUTION
4.3.4. NEW ENTRANTS
4.3.5. INDUSTRY RIVALRY
4.4. VALUE CHAIN ANALYSIS
4.4.1. DATA WAREHOUSE
4.4.2. ARTIFICIAL INTELLIGENCE (AI) ANALYSIS
4.4.3. SOFTWARE DEVELOPMENT
4.5. KEY BUYING CRITERIA
4.5.1. APPLICATION
4.5.2. TECHNOLOGY
4.5.3. INTEGRATION WITH EXISTING INFRASTRUCTURE
4.6. REGULATORY FRAMEWORK
5. MARKET BY OFFERING
5.1. SOFTWARE
5.1.1. MARKET FORECAST FIGURE
5.1.2. SEGMENT ANALYSIS
5.2. SERVICES
5.2.1. MARKET FORECAST FIGURE
5.2.2. SEGMENT ANALYSIS
5.3. HARDWARE
5.3.1. MARKET FORECAST FIGURE
5.3.2. SEGMENT ANALYSIS
6. MARKET BY TECHNOLOGY
6.1. NATURAL LANGUAGE PROCESSING
6.1.1. MARKET FORECAST FIGURE
6.1.2. SEGMENT ANALYSIS
6.2. QUERYING METHOD
6.2.1. MARKET FORECAST FIGURE
6.2.2. SEGMENT ANALYSIS
6.3. CONTEXT AWARE PROCESSING
6.3.1. MARKET FORECAST FIGURE
6.3.2. SEGMENT ANALYSIS
6.4. DEEP LEARNING
6.4.1. MARKET FORECAST FIGURE
6.4.2. SEGMENT ANALYSIS
7. MARKET BY END-USER
7.1. HEALTHCARE PROVIDERS
7.1.1. MARKET FORECAST FIGURE
7.1.2. SEGMENT ANALYSIS
7.2. PHARMACEUTICAL AND BIOTECHNOLOGY COMPANIES
7.2.1. MARKET FORECAST FIGURE
7.2.2. SEGMENT ANALYSIS
7.3. PAYERS
7.3.1. MARKET FORECAST FIGURE
7.3.2. SEGMENT ANALYSIS
7.4. ACOS AND MCOS
7.4.1. MARKET FORECAST FIGURE
7.4.2. SEGMENT ANALYSIS
7.5. PATIENTS
7.5.1. MARKET FORECAST FIGURE
7.5.2. SEGMENT ANALYSIS
8. MARKET BY APPLICATION
8.1. ROBOT-ASSISTED SURGERY
8.1.1. MARKET FORECAST FIGURE
8.1.2. SEGMENT ANALYSIS
8.2. VIRTUAL NURSING ASSISTANT
8.2.1. MARKET FORECAST FIGURE
8.2.2. SEGMENT ANALYSIS
8.3. ADMINISTRATIVE WORKFLOW ASSISTANCE
8.3.1. MARKET FORECAST FIGURE
8.3.2. SEGMENT ANALYSIS
8.4. FRAUD DETECTION
8.4.1. MARKET FORECAST FIGURE
8.4.2. SEGMENT ANALYSIS
8.5. DOSAGE ERROR REDUCTION
8.5.1. MARKET FORECAST FIGURE
8.5.2. SEGMENT ANALYSIS
8.6. CLINICAL TRIAL PARTICIPANT IDENTIFIER
8.6.1. MARKET FORECAST FIGURE
8.6.2. SEGMENT ANALYSIS
8.7. PRELIMINARY DIAGNOSIS
8.7.1. MARKET FORECAST FIGURE
8.7.2. SEGMENT ANALYSIS
8.8. OTHER APPLICATIONS
8.8.1. MARKET FORECAST FIGURE
8.8.2. SEGMENT ANALYSIS
9. COMPETITIVE LANDSCAPE
9.1. KEY STRATEGIC DEVELOPMENTS
9.1.1. MERGERS & ACQUISITIONS
9.1.2. PRODUCT LAUNCHES & DEVELOPMENTS
9.1.3. PARTNERSHIPS & AGREEMENTS
9.2. COMPANY PROFILES
9.2.1. DEEP GENOMICS INC
9.2.1.1. COMPANY OVERVIEW
9.2.1.2. PRODUCT LIST
9.2.2. ENLITIC INC
9.2.2.1. COMPANY OVERVIEW
9.2.2.2. PRODUCT LIST
9.2.3. GE HEALTHCARE
9.2.3.1. COMPANY OVERVIEW
9.2.3.2. PRODUCT LIST
9.2.3.3. STRENGTHS & CHALLENGES
9.2.4. GOOGLE
9.2.4.1. COMPANY OVERVIEW
9.2.4.2. PRODUCT LIST
9.2.4.3. STRENGTHS & CHALLENGES
9.2.5. IBM CORPORATION
9.2.5.1. COMPANY OVERVIEW
9.2.5.2. PRODUCT LIST
9.2.5.3. STRENGTHS & CHALLENGES
9.2.6. INTEL CORPORATION
9.2.6.1. COMPANY OVERVIEW
9.2.6.2. PRODUCT LIST
9.2.6.3. STRENGTHS & CHALLENGES
9.2.7. MEDTRONIC PLC
9.2.7.1. COMPANY OVERVIEW
9.2.7.2. PRODUCT LIST
9.2.7.3. STRENGTHS & CHALLENGES
9.2.8. MICROSOFT CORPORATION
9.2.8.1. COMPANY OVERVIEW
9.2.8.2. PRODUCT LIST
9.2.8.3. STRENGTHS & CHALLENGES
9.2.9. NVIDIA CORPORATION
9.2.9.1. COMPANY OVERVIEW
9.2.9.2. PRODUCT LIST
9.2.9.3. STRENGTHS & CHALLENGES
9.2.10. STRYKER CORPORATION
9.2.10.1. COMPANY OVERVIEW
9.2.10.2. PRODUCT LIST
9.2.10.3. STRENGTHS & CHALLENGES

 

ページTOPに戻る


 

Summary

KEY FINDINGS
The United States artificial intelligence (AI) in healthcare market is expected to grow at a CAGR of 35.90% during the forecast period 2024-2032. Several factors elevate the market growth, such as large volumes of healthcare data supporting the adoption of AI, a growing number of AI and machine learning start-ups, the emergence of personalized medicine in tests for clinical decision-making, and AI creating a real-time monitoring system.
MARKET INSIGHTS
The United States artificial intelligence (AI) in healthcare market is experiencing substantive growth, fueled in large part by the vast volumes of healthcare data available. With the increasing digitization of patient records, diagnostic imaging, and other medical information, the adoption of AI is being propelled by the abundance of data that can be utilized for enhanced decision-making and personalized patient care. This wealth of information facilitates more accurate diagnoses and contributes to the development of innovative AI applications.
Apart from the surge in healthcare data, the market is witnessing a proliferation of AI and machine learning start-ups. These emerging companies are integral in driving innovation and fostering the integration of AI technologies within the healthcare sector. The growing number of start-ups is infusing vitality into the market, powering competition, and leading to the creation of diverse AI applications designed to address various healthcare challenges. This trend is instrumental in accelerating the evolution of AI in healthcare and promoting a competitive market environment that encourages continuous advancements.
Despite the promising growth, challenges persist in maintaining data security within the United States artificial intelligence (AI) in healthcare market. The interconnectedness of healthcare systems and the reliance on vast amounts of sensitive patient information raise concerns about potential data breaches and privacy issues. Ensuring the security of patient data is paramount in the healthcare sector. The market faces the intricate challenge of implementing strong cybersecurity measures to guarantee the confidentiality and integrity of information processed by AI systems. Addressing these challenges is essential for building trust among healthcare professionals, patients, and stakeholders, elevating the responsible and sustained development of the artificial intelligence (AI) in healthcare.
COMPETITIVE INSIGHTS
Some of the major companies in the United States artificial intelligence (AI) in healthcare market include Enlitic Inc, Deep Genomics Inc, Google, IBM Corporation, etc.
Our report offerings include:
• Explore key findings of the overall market
• Strategic breakdown of market dynamics (Drivers, Restraints, Opportunities, Challenges)
• Market forecasts for a minimum of 9 years, along with 3 years of historical data for all segments, sub-segments, and regions
• Market Segmentation caters to a thorough assessment of key segments with their market estimations
• Geographical Analysis: Assessments of the mentioned regions and country-level segments with their market share
• Key analytics: Porter’s Five Forces Analysis, Vendor Landscape, Opportunity Matrix, Key Buying Criteria, etc.
• The competitive landscape is the theoretical explanation of the key companies based on factors such as market share.
• Company profiling: A detailed company overview, product/services offered, SCOT analysis, and recent strategic developments



ページTOPに戻る


Table of Contents

TABLE OF CONTENTS
1. RESEARCH SCOPE & METHODOLOGY
1.1. STUDY OBJECTIVES
1.2. METHODOLOGY
1.3. ASSUMPTIONS & LIMITATIONS
2. EXECUTIVE SUMMARY
2.1. MARKET SIZE & ESTIMATES
2.2. COUNTRY SNAPSHOT
2.3. COUNTRY ANALYSIS
2.4. SCOPE OF STUDY
2.5. CRISIS SCENARIO ANALYSIS
2.6. MAJOR MARKET FINDINGS
2.6.1. SOFTWARE OFFERING IS LEADING THE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET, DRIVING INNOVATION AND EFFICIENCY
2.6.2. NATURAL LANGUAGE PROCESSING DOMINATING ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE TECHNOLOGY
2.6.3. HEALTHCARE PROVIDERS ARE THE MAJOR USERS OF ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE
2.6.4. DOSAGE ERROR REDUCTION IS THE FASTEST-GROWING APPLICATION
3. MARKET DYNAMICS
3.1. KEY DRIVERS
3.1.1. LARGE VOLUMES OF HEALTHCARE DATA SUPPORTING THE ADOPTION OF AI
3.1.2. GROWING NUMBER OF AI AND MACHINE LEARNING START-UPS
3.1.3. EMERGENCE OF PERSONALIZED MEDICINE IN TESTS FOR CLINICAL DECISION-MAKING
3.1.4. AI CREATING A REAL-TIME MONITORING SYSTEM
3.2. KEY RESTRAINTS
3.2.1. CHALLENGES IN MAINTAINING DATA SECURITY
3.2.2. COST CONSTRAINTS AND LOW RETURN ON INVESTMENT (ROI)
4. KEY ANALYTICS
4.1. KEY MARKET TRENDS
4.1.1. WIDENING APPLICATIONS OF AI IN THE HEALTHCARE INDUSTRY
4.1.2. INCREASING DEMAND FOR AI IN DRUG DISCOVERY
4.1.3. HIGH EMPHASIS ON THE DEVELOPMENT OF PRECISION MEDICINE AND PERSONALIZED DRUGS
4.1.4. INCREASING USE OF AI IN GENETICS
4.1.5. AI CREATING A REAL-TIME MONITORING SYSTEM
4.2. PESTLE ANALYSIS
4.2.1. POLITICAL
4.2.2. ECONOMICAL
4.2.3. SOCIAL
4.2.4. TECHNOLOGICAL
4.2.5. LEGAL
4.2.6. ENVIRONMENTAL
4.3. PORTER’S FIVE FORCES ANALYSIS
4.3.1. BUYERS POWER
4.3.2. SUPPLIERS POWER
4.3.3. SUBSTITUTION
4.3.4. NEW ENTRANTS
4.3.5. INDUSTRY RIVALRY
4.4. VALUE CHAIN ANALYSIS
4.4.1. DATA WAREHOUSE
4.4.2. ARTIFICIAL INTELLIGENCE (AI) ANALYSIS
4.4.3. SOFTWARE DEVELOPMENT
4.5. KEY BUYING CRITERIA
4.5.1. APPLICATION
4.5.2. TECHNOLOGY
4.5.3. INTEGRATION WITH EXISTING INFRASTRUCTURE
4.6. REGULATORY FRAMEWORK
5. MARKET BY OFFERING
5.1. SOFTWARE
5.1.1. MARKET FORECAST FIGURE
5.1.2. SEGMENT ANALYSIS
5.2. SERVICES
5.2.1. MARKET FORECAST FIGURE
5.2.2. SEGMENT ANALYSIS
5.3. HARDWARE
5.3.1. MARKET FORECAST FIGURE
5.3.2. SEGMENT ANALYSIS
6. MARKET BY TECHNOLOGY
6.1. NATURAL LANGUAGE PROCESSING
6.1.1. MARKET FORECAST FIGURE
6.1.2. SEGMENT ANALYSIS
6.2. QUERYING METHOD
6.2.1. MARKET FORECAST FIGURE
6.2.2. SEGMENT ANALYSIS
6.3. CONTEXT AWARE PROCESSING
6.3.1. MARKET FORECAST FIGURE
6.3.2. SEGMENT ANALYSIS
6.4. DEEP LEARNING
6.4.1. MARKET FORECAST FIGURE
6.4.2. SEGMENT ANALYSIS
7. MARKET BY END-USER
7.1. HEALTHCARE PROVIDERS
7.1.1. MARKET FORECAST FIGURE
7.1.2. SEGMENT ANALYSIS
7.2. PHARMACEUTICAL AND BIOTECHNOLOGY COMPANIES
7.2.1. MARKET FORECAST FIGURE
7.2.2. SEGMENT ANALYSIS
7.3. PAYERS
7.3.1. MARKET FORECAST FIGURE
7.3.2. SEGMENT ANALYSIS
7.4. ACOS AND MCOS
7.4.1. MARKET FORECAST FIGURE
7.4.2. SEGMENT ANALYSIS
7.5. PATIENTS
7.5.1. MARKET FORECAST FIGURE
7.5.2. SEGMENT ANALYSIS
8. MARKET BY APPLICATION
8.1. ROBOT-ASSISTED SURGERY
8.1.1. MARKET FORECAST FIGURE
8.1.2. SEGMENT ANALYSIS
8.2. VIRTUAL NURSING ASSISTANT
8.2.1. MARKET FORECAST FIGURE
8.2.2. SEGMENT ANALYSIS
8.3. ADMINISTRATIVE WORKFLOW ASSISTANCE
8.3.1. MARKET FORECAST FIGURE
8.3.2. SEGMENT ANALYSIS
8.4. FRAUD DETECTION
8.4.1. MARKET FORECAST FIGURE
8.4.2. SEGMENT ANALYSIS
8.5. DOSAGE ERROR REDUCTION
8.5.1. MARKET FORECAST FIGURE
8.5.2. SEGMENT ANALYSIS
8.6. CLINICAL TRIAL PARTICIPANT IDENTIFIER
8.6.1. MARKET FORECAST FIGURE
8.6.2. SEGMENT ANALYSIS
8.7. PRELIMINARY DIAGNOSIS
8.7.1. MARKET FORECAST FIGURE
8.7.2. SEGMENT ANALYSIS
8.8. OTHER APPLICATIONS
8.8.1. MARKET FORECAST FIGURE
8.8.2. SEGMENT ANALYSIS
9. COMPETITIVE LANDSCAPE
9.1. KEY STRATEGIC DEVELOPMENTS
9.1.1. MERGERS & ACQUISITIONS
9.1.2. PRODUCT LAUNCHES & DEVELOPMENTS
9.1.3. PARTNERSHIPS & AGREEMENTS
9.2. COMPANY PROFILES
9.2.1. DEEP GENOMICS INC
9.2.1.1. COMPANY OVERVIEW
9.2.1.2. PRODUCT LIST
9.2.2. ENLITIC INC
9.2.2.1. COMPANY OVERVIEW
9.2.2.2. PRODUCT LIST
9.2.3. GE HEALTHCARE
9.2.3.1. COMPANY OVERVIEW
9.2.3.2. PRODUCT LIST
9.2.3.3. STRENGTHS & CHALLENGES
9.2.4. GOOGLE
9.2.4.1. COMPANY OVERVIEW
9.2.4.2. PRODUCT LIST
9.2.4.3. STRENGTHS & CHALLENGES
9.2.5. IBM CORPORATION
9.2.5.1. COMPANY OVERVIEW
9.2.5.2. PRODUCT LIST
9.2.5.3. STRENGTHS & CHALLENGES
9.2.6. INTEL CORPORATION
9.2.6.1. COMPANY OVERVIEW
9.2.6.2. PRODUCT LIST
9.2.6.3. STRENGTHS & CHALLENGES
9.2.7. MEDTRONIC PLC
9.2.7.1. COMPANY OVERVIEW
9.2.7.2. PRODUCT LIST
9.2.7.3. STRENGTHS & CHALLENGES
9.2.8. MICROSOFT CORPORATION
9.2.8.1. COMPANY OVERVIEW
9.2.8.2. PRODUCT LIST
9.2.8.3. STRENGTHS & CHALLENGES
9.2.9. NVIDIA CORPORATION
9.2.9.1. COMPANY OVERVIEW
9.2.9.2. PRODUCT LIST
9.2.9.3. STRENGTHS & CHALLENGES
9.2.10. STRYKER CORPORATION
9.2.10.1. COMPANY OVERVIEW
9.2.10.2. PRODUCT LIST
9.2.10.3. STRENGTHS & CHALLENGES

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野の最新刊レポート

  • 本レポートと同分野の最新刊レポートはありません。

Inkwood Research社の
Fatal error: Uncaught TypeError: Cannot access offset of type string on string in /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/templates_c/58b4bde6a9738f3389cd7dea7f4ef5c62fdc6c54_0.file.auto_report.tpl.php:571 Stack trace: #0 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_template_resource_base.php(123): content_68a805fa34b2e0_16717164() #1 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_template_compiled.php(114): Smarty_Template_Resource_Base->getRenderedTemplateCode() #2 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_internal_template.php(216): Smarty_Template_Compiled->render() #3 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_internal_template.php(385): Smarty_Internal_Template->render() #4 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/templates_c/f20300271f4eb0fb4a2cf788aaabb06be5646d19_0.file.frame-FULL.tpl.php(278): Smarty_Internal_Template->_subTemplateRender() #5 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_template_resource_base.php(123): content_68a805fa26a288_46622063() #6 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_template_compiled.php(114): Smarty_Template_Resource_Base->getRenderedTemplateCode() #7 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_internal_template.php(216): Smarty_Template_Compiled->render() #8 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_internal_templatebase.php(238): Smarty_Internal_Template->render() #9 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_internal_templatebase.php(134): Smarty_Internal_TemplateBase->_execute() #10 /var/www/vhosts/dri.co.jp/httpdocs/auto/show_report.php(776): Smarty_Internal_TemplateBase->display() #11 {main} thrown in /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/templates_c/58b4bde6a9738f3389cd7dea7f4ef5c62fdc6c54_0.file.auto_report.tpl.php on line 571