世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

インドのヘルスケアにおける人工知能(AI)市場予測 2024-2032

インドのヘルスケアにおける人工知能(AI)市場予測 2024-2032


INDIA ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET FORECAST 2024-2032

主な調査結果 インドのヘルスケアにおける人工知能(AI)市場は、予測期間2024~2032年の間に年平均成長率37.86%で成長すると予測される。AI導入を支える大量の医療データ、AI・機械学習スタートアップ企業の増... もっと見る

 

 

出版社 出版年月 電子版価格 納期 ページ数 言語
Inkwood Research
インクウッドリサーチ
2024年3月13日 US$1,100
シングルユーザライセンス(印刷不可)
ライセンス・価格情報
注文方法はこちら
2-3営業日以内 147 英語

 

サマリー

主な調査結果
インドのヘルスケアにおける人工知能(AI)市場は、予測期間2024~2032年の間に年平均成長率37.86%で成長すると予測される。AI導入を支える大量の医療データ、AI・機械学習スタートアップ企業の増加、臨床意思決定のための検査における個別化医療の出現、AIによるリアルタイムモニタリングシステムの構築など、いくつかの要因が市場成長を促進している。
市場インサイト
インドのヘルスケアにおける人工知能(AI)市場では、ヘルスケアプロバイダーがAI技術の主要ユーザーとして中心的な役割を果たしている。AIツールの採用は、診断の改善や個別化された治療計画のためにテクノロジーを利用する、医療行為の根本的な進歩を意味する。AIは医療従事者の意思決定プロセスに不可欠な要素となり、患者のケアと転帰を最適化する。医療提供者によるAIの広範な採用は、医療行為を進歩させるための独創的なソリューションの統合に対する市場の献身を示すものである。
同時に、創薬におけるAIアプリケーションの需要も明らかに急増しており、AIが製薬研究に革命をもたらす可能性を認識していることが浮き彫りになっている。AIの統合は、潜在的な候補物質の迅速な特定、分子構造の最適化、有効性の予測によって創薬プロセスを加速する。創薬におけるAIの需要の高まりは、医薬品イノベーションにおける効率的で的を絞った進歩に市場が戦略的に焦点を当てていることを反映している。
さらに、AIに依存する医療提供者と創薬におけるAI需要の高まりの融合は、インドのヘルスケアにおける人工知能(AI)市場における包括的な革新を示すものである。臨床の実践を洗練させるだけでなく、この連携は医薬品の研究開発における大きな進歩を推進する可能性を秘めています。医療提供と創薬におけるAIの二重の役割により、AIはインドの医療制度という進化し続ける領域における進歩の極めて重要な推進力として浮上している。
競争に関する洞察
インドのヘルスケア分野における人工知能(AI)市場の主要企業には、NVIDIA Corporation、Google、IBM Corporation、Intel Corporation、Microsoft Corporationなどがあります。
弊社のレポート提供内容は以下の通りです:
- 市場全体の主要調査結果を探る
- 市場ダイナミクスの戦略的内訳(促進要因、抑制要因、機会、課題)
- 全セグメント、サブセグメント、地域の3年間の過去データとともに、最低9年間の市場予測
- 市場セグメンテーション:主要セグメントの徹底的な評価と市場予測
- 地域別分析:言及された地域と国レベルのセグメントを市場シェアとともに評価
- 主要分析:ポーターのファイブフォース分析、ベンダーランドスケープ、オポチュニティマトリックス、主要購買基準など。
- 競争環境は、要因、市場シェアなどに基づく主要企業の理論的説明である。
- 企業プロファイリング:詳細な会社概要、提供する製品・サービス、SCOT分析、最近の戦略的展開など

ページTOPに戻る


目次

TABLE OF CONTENTS
1. RESEARCH SCOPE & METHODOLOGY
1.1. STUDY OBJECTIVES
1.2. METHODOLOGY
1.3. ASSUMPTIONS & LIMITATIONS
2. EXECUTIVE SUMMARY
2.1. MARKET SIZE & ESTIMATES
2.2. COUNTRY SNAPSHOT
2.3. COUNTRY ANALYSIS
2.4. SCOPE OF STUDY
2.5. CRISIS SCENARIO ANALYSIS
2.6. MAJOR MARKET FINDINGS
2.6.1. SOFTWARE OFFERING IS LEADING THE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET, DRIVING INNOVATION AND EFFICIENCY
2.6.2. NATURAL LANGUAGE PROCESSING DOMINATING ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE TECHNOLOGY
2.6.3. HEALTHCARE PROVIDERS ARE THE MAJOR USERS OF ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE
2.6.4. DOSAGE ERROR REDUCTION IS THE FASTEST-GROWING APPLICATION
3. MARKET DYNAMICS
3.1. KEY DRIVERS
3.1.1. LARGE VOLUMES OF HEALTHCARE DATA SUPPORTING THE ADOPTION OF AI
3.1.2. GROWING NUMBER OF AI AND MACHINE LEARNING START-UPS
3.1.3. EMERGENCE OF PERSONALIZED MEDICINE IN TESTS FOR CLINICAL DECISION-MAKING
3.1.4. AI CREATING A REAL-TIME MONITORING SYSTEM
3.2. KEY RESTRAINTS
3.2.1. CHALLENGES IN MAINTAINING DATA SECURITY
3.2.2. COST CONSTRAINTS AND LOW RETURN ON INVESTMENT (ROI)
4. KEY ANALYTICS
4.1. KEY MARKET TRENDS
4.1.1. WIDENING APPLICATIONS OF AI IN THE HEALTHCARE INDUSTRY
4.1.2. INCREASING DEMAND FOR AI IN DRUG DISCOVERY
4.1.3. HIGH EMPHASIS ON THE DEVELOPMENT OF PRECISION MEDICINE AND PERSONALIZED DRUGS
4.1.4. INCREASING USE OF AI IN GENETICS
4.1.5. AI CREATING A REAL-TIME MONITORING SYSTEM
4.2. PESTLE ANALYSIS
4.2.1. POLITICAL
4.2.2. ECONOMICAL
4.2.3. SOCIAL
4.2.4. TECHNOLOGICAL
4.2.5. LEGAL
4.2.6. ENVIRONMENTAL
4.3. PORTER’S FIVE FORCES ANALYSIS
4.3.1. BUYERS POWER
4.3.2. SUPPLIERS POWER
4.3.3. SUBSTITUTION
4.3.4. NEW ENTRANTS
4.3.5. INDUSTRY RIVALRY
4.4. VALUE CHAIN ANALYSIS
4.4.1. DATA WAREHOUSE
4.4.2. ARTIFICIAL INTELLIGENCE (AI) ANALYSIS
4.4.3. SOFTWARE DEVELOPMENT
4.5. KEY BUYING CRITERIA
4.5.1. APPLICATION
4.5.2. TECHNOLOGY
4.5.3. INTEGRATION WITH EXISTING INFRASTRUCTURE
5. MARKET BY OFFERING
5.1. SOFTWARE
5.1.1. MARKET FORECAST FIGURE
5.1.2. SEGMENT ANALYSIS
5.2. SERVICES
5.2.1. MARKET FORECAST FIGURE
5.2.2. SEGMENT ANALYSIS
5.3. HARDWARE
5.3.1. MARKET FORECAST FIGURE
5.3.2. SEGMENT ANALYSIS
6. MARKET BY TECHNOLOGY
6.1. NATURAL LANGUAGE PROCESSING
6.1.1. MARKET FORECAST FIGURE
6.1.2. SEGMENT ANALYSIS
6.2. QUERYING METHOD
6.2.1. MARKET FORECAST FIGURE
6.2.2. SEGMENT ANALYSIS
6.3. CONTEXT AWARE PROCESSING
6.3.1. MARKET FORECAST FIGURE
6.3.2. SEGMENT ANALYSIS
6.4. DEEP LEARNING
6.4.1. MARKET FORECAST FIGURE
6.4.2. SEGMENT ANALYSIS
7. MARKET BY END-USER
7.1. HEALTHCARE PROVIDERS
7.1.1. MARKET FORECAST FIGURE
7.1.2. SEGMENT ANALYSIS
7.2. PHARMACEUTICAL AND BIOTECHNOLOGY COMPANIES
7.2.1. MARKET FORECAST FIGURE
7.2.2. SEGMENT ANALYSIS
7.3. PAYERS
7.3.1. MARKET FORECAST FIGURE
7.3.2. SEGMENT ANALYSIS
7.4. ACOS AND MCOS
7.4.1. MARKET FORECAST FIGURE
7.4.2. SEGMENT ANALYSIS
7.5. PATIENTS
7.5.1. MARKET FORECAST FIGURE
7.5.2. SEGMENT ANALYSIS
8. MARKET BY APPLICATION
8.1. ROBOT-ASSISTED SURGERY
8.1.1. MARKET FORECAST FIGURE
8.1.2. SEGMENT ANALYSIS
8.2. VIRTUAL NURSING ASSISTANT
8.2.1. MARKET FORECAST FIGURE
8.2.2. SEGMENT ANALYSIS
8.3. ADMINISTRATIVE WORKFLOW ASSISTANCE
8.3.1. MARKET FORECAST FIGURE
8.3.2. SEGMENT ANALYSIS
8.4. FRAUD DETECTION
8.4.1. MARKET FORECAST FIGURE
8.4.2. SEGMENT ANALYSIS
8.5. DOSAGE ERROR REDUCTION
8.5.1. MARKET FORECAST FIGURE
8.5.2. SEGMENT ANALYSIS
8.6. CLINICAL TRIAL PARTICIPANT IDENTIFIER
8.6.1. MARKET FORECAST FIGURE
8.6.2. SEGMENT ANALYSIS
8.7. PRELIMINARY DIAGNOSIS
8.7.1. MARKET FORECAST FIGURE
8.7.2. SEGMENT ANALYSIS
8.8. OTHER APPLICATIONS
8.8.1. MARKET FORECAST FIGURE
8.8.2. SEGMENT ANALYSIS
9. COMPETITIVE LANDSCAPE
9.1. KEY STRATEGIC DEVELOPMENTS
9.1.1. MERGERS & ACQUISITIONS
9.1.2. PRODUCT LAUNCHES & DEVELOPMENTS
9.1.3. PARTNERSHIPS & AGREEMENTS
9.2. COMPANY PROFILES
9.2.1. GE HEALTHCARE
9.2.1.1. COMPANY OVERVIEW
9.2.1.2. PRODUCT LIST
9.2.1.3. STRENGTHS & CHALLENGES
9.2.2. GOOGLE
9.2.2.1. COMPANY OVERVIEW
9.2.2.2. PRODUCT LIST
9.2.2.3. STRENGTHS & CHALLENGES
9.2.3. IBM CORPORATION
9.2.3.1. COMPANY OVERVIEW
9.2.3.2. PRODUCT LIST
9.2.3.3. STRENGTHS & CHALLENGES
9.2.4. INTEL CORPORATION
9.2.4.1. COMPANY OVERVIEW
9.2.4.2. PRODUCT LIST
9.2.4.3. STRENGTHS & CHALLENGES
9.2.5. MEDTRONIC PLC
9.2.5.1. COMPANY OVERVIEW
9.2.5.2. PRODUCT LIST
9.2.5.3. STRENGTHS & CHALLENGES
9.2.6. MICROSOFT CORPORATION
9.2.6.1. COMPANY OVERVIEW
9.2.6.2. PRODUCT LIST
9.2.6.3. STRENGTHS & CHALLENGES
9.2.7. NVIDIA CORPORATION
9.2.7.1. COMPANY OVERVIEW
9.2.7.2. PRODUCT LIST
9.2.7.3. STRENGTHS & CHALLENGES
9.2.8. STRYKER CORPORATION
9.2.8.1. COMPANY OVERVIEW
9.2.8.2. PRODUCT LIST
9.2.8.3. STRENGTHS & CHALLENGES
9.2.9. SIEMENS HEALTHINEERS
9.2.9.1. COMPANY OVERVIEW
9.2.9.2. PRODUCT LIST
9.2.9.3. STRENGTHS & CHALLENGES

 

ページTOPに戻る


 

Summary

KEY FINDINGS
The India artificial intelligence (AI) in healthcare market is expected to grow at a CAGR of 37.86% during the forecast period 2024-2032. Several factors promote the market growth, such as large volumes of healthcare data supporting the adoption of AI, a growing number of AI and machine learning start-ups, the emergence of personalized medicine in tests for clinical decision-making, and AI creating a real-time monitoring system.
MARKET INSIGHTS
In the India artificial intelligence (AI) in healthcare market, healthcare providers play a central role as major users of AI technologies. The adoption of AI tools signifies a radical advancement in healthcare practices, using technology for improved diagnostics and personalized treatment planning. AI becomes an integral part of the decision-making process for healthcare professionals, optimizing patient care and outcomes. The extensive adoption of AI by providers underlines the market’s dedication to integrating inventive solutions for advancing medical practices.
Concurrently, there is a discernible surge in the demand for AI applications in drug discovery, highlighting the recognition of AI's potential to revolutionize pharmaceutical research. The integration of AI accelerates drug discovery processes by quickly identifying potential candidates, optimizing molecular structures, and predicting efficacy. The growing demand for AI in drug discovery reflects a strategic market focus on efficient and targeted advancements in pharmaceutical innovation.
Further, the convergence of healthcare providers relying on AI and the increasing demand for AI in drug discovery marks a comprehensive innovation in the India artificial intelligence (AI) in healthcare market. Beyond refining clinical practices, this collaboration has the potential to propel significant advancements in pharmaceutical research and development. With AI's dual role in healthcare provision and drug discovery, it emerges as a pivotal driver of progress within the ever-evolving domain of the Indian healthcare system.
COMPETITIVE INSIGHTS
Some of the major companies in the India artificial intelligence (AI) in healthcare market include NVIDIA Corporation, Google, IBM Corporation, Intel Corporation, Microsoft Corporation, etc.
Our report offerings include:
• Explore key findings of the overall market
• Strategic breakdown of market dynamics (Drivers, Restraints, Opportunities, Challenges)
• Market forecasts for a minimum of 9 years, along with 3 years of historical data for all segments, sub-segments, and regions
• Market Segmentation caters to a thorough assessment of key segments with their market estimations
• Geographical Analysis: Assessments of the mentioned regions and country-level segments with their market share
• Key analytics: Porter’s Five Forces Analysis, Vendor Landscape, Opportunity Matrix, Key Buying Criteria, etc.
• The competitive landscape is the theoretical explanation of the key companies based on factors, market share, etc.
• Company profiling: A detailed company overview, product/services offered, SCOT analysis, and recent strategic developments



ページTOPに戻る


Table of Contents

TABLE OF CONTENTS
1. RESEARCH SCOPE & METHODOLOGY
1.1. STUDY OBJECTIVES
1.2. METHODOLOGY
1.3. ASSUMPTIONS & LIMITATIONS
2. EXECUTIVE SUMMARY
2.1. MARKET SIZE & ESTIMATES
2.2. COUNTRY SNAPSHOT
2.3. COUNTRY ANALYSIS
2.4. SCOPE OF STUDY
2.5. CRISIS SCENARIO ANALYSIS
2.6. MAJOR MARKET FINDINGS
2.6.1. SOFTWARE OFFERING IS LEADING THE ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE MARKET, DRIVING INNOVATION AND EFFICIENCY
2.6.2. NATURAL LANGUAGE PROCESSING DOMINATING ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE TECHNOLOGY
2.6.3. HEALTHCARE PROVIDERS ARE THE MAJOR USERS OF ARTIFICIAL INTELLIGENCE (AI) IN HEALTHCARE
2.6.4. DOSAGE ERROR REDUCTION IS THE FASTEST-GROWING APPLICATION
3. MARKET DYNAMICS
3.1. KEY DRIVERS
3.1.1. LARGE VOLUMES OF HEALTHCARE DATA SUPPORTING THE ADOPTION OF AI
3.1.2. GROWING NUMBER OF AI AND MACHINE LEARNING START-UPS
3.1.3. EMERGENCE OF PERSONALIZED MEDICINE IN TESTS FOR CLINICAL DECISION-MAKING
3.1.4. AI CREATING A REAL-TIME MONITORING SYSTEM
3.2. KEY RESTRAINTS
3.2.1. CHALLENGES IN MAINTAINING DATA SECURITY
3.2.2. COST CONSTRAINTS AND LOW RETURN ON INVESTMENT (ROI)
4. KEY ANALYTICS
4.1. KEY MARKET TRENDS
4.1.1. WIDENING APPLICATIONS OF AI IN THE HEALTHCARE INDUSTRY
4.1.2. INCREASING DEMAND FOR AI IN DRUG DISCOVERY
4.1.3. HIGH EMPHASIS ON THE DEVELOPMENT OF PRECISION MEDICINE AND PERSONALIZED DRUGS
4.1.4. INCREASING USE OF AI IN GENETICS
4.1.5. AI CREATING A REAL-TIME MONITORING SYSTEM
4.2. PESTLE ANALYSIS
4.2.1. POLITICAL
4.2.2. ECONOMICAL
4.2.3. SOCIAL
4.2.4. TECHNOLOGICAL
4.2.5. LEGAL
4.2.6. ENVIRONMENTAL
4.3. PORTER’S FIVE FORCES ANALYSIS
4.3.1. BUYERS POWER
4.3.2. SUPPLIERS POWER
4.3.3. SUBSTITUTION
4.3.4. NEW ENTRANTS
4.3.5. INDUSTRY RIVALRY
4.4. VALUE CHAIN ANALYSIS
4.4.1. DATA WAREHOUSE
4.4.2. ARTIFICIAL INTELLIGENCE (AI) ANALYSIS
4.4.3. SOFTWARE DEVELOPMENT
4.5. KEY BUYING CRITERIA
4.5.1. APPLICATION
4.5.2. TECHNOLOGY
4.5.3. INTEGRATION WITH EXISTING INFRASTRUCTURE
5. MARKET BY OFFERING
5.1. SOFTWARE
5.1.1. MARKET FORECAST FIGURE
5.1.2. SEGMENT ANALYSIS
5.2. SERVICES
5.2.1. MARKET FORECAST FIGURE
5.2.2. SEGMENT ANALYSIS
5.3. HARDWARE
5.3.1. MARKET FORECAST FIGURE
5.3.2. SEGMENT ANALYSIS
6. MARKET BY TECHNOLOGY
6.1. NATURAL LANGUAGE PROCESSING
6.1.1. MARKET FORECAST FIGURE
6.1.2. SEGMENT ANALYSIS
6.2. QUERYING METHOD
6.2.1. MARKET FORECAST FIGURE
6.2.2. SEGMENT ANALYSIS
6.3. CONTEXT AWARE PROCESSING
6.3.1. MARKET FORECAST FIGURE
6.3.2. SEGMENT ANALYSIS
6.4. DEEP LEARNING
6.4.1. MARKET FORECAST FIGURE
6.4.2. SEGMENT ANALYSIS
7. MARKET BY END-USER
7.1. HEALTHCARE PROVIDERS
7.1.1. MARKET FORECAST FIGURE
7.1.2. SEGMENT ANALYSIS
7.2. PHARMACEUTICAL AND BIOTECHNOLOGY COMPANIES
7.2.1. MARKET FORECAST FIGURE
7.2.2. SEGMENT ANALYSIS
7.3. PAYERS
7.3.1. MARKET FORECAST FIGURE
7.3.2. SEGMENT ANALYSIS
7.4. ACOS AND MCOS
7.4.1. MARKET FORECAST FIGURE
7.4.2. SEGMENT ANALYSIS
7.5. PATIENTS
7.5.1. MARKET FORECAST FIGURE
7.5.2. SEGMENT ANALYSIS
8. MARKET BY APPLICATION
8.1. ROBOT-ASSISTED SURGERY
8.1.1. MARKET FORECAST FIGURE
8.1.2. SEGMENT ANALYSIS
8.2. VIRTUAL NURSING ASSISTANT
8.2.1. MARKET FORECAST FIGURE
8.2.2. SEGMENT ANALYSIS
8.3. ADMINISTRATIVE WORKFLOW ASSISTANCE
8.3.1. MARKET FORECAST FIGURE
8.3.2. SEGMENT ANALYSIS
8.4. FRAUD DETECTION
8.4.1. MARKET FORECAST FIGURE
8.4.2. SEGMENT ANALYSIS
8.5. DOSAGE ERROR REDUCTION
8.5.1. MARKET FORECAST FIGURE
8.5.2. SEGMENT ANALYSIS
8.6. CLINICAL TRIAL PARTICIPANT IDENTIFIER
8.6.1. MARKET FORECAST FIGURE
8.6.2. SEGMENT ANALYSIS
8.7. PRELIMINARY DIAGNOSIS
8.7.1. MARKET FORECAST FIGURE
8.7.2. SEGMENT ANALYSIS
8.8. OTHER APPLICATIONS
8.8.1. MARKET FORECAST FIGURE
8.8.2. SEGMENT ANALYSIS
9. COMPETITIVE LANDSCAPE
9.1. KEY STRATEGIC DEVELOPMENTS
9.1.1. MERGERS & ACQUISITIONS
9.1.2. PRODUCT LAUNCHES & DEVELOPMENTS
9.1.3. PARTNERSHIPS & AGREEMENTS
9.2. COMPANY PROFILES
9.2.1. GE HEALTHCARE
9.2.1.1. COMPANY OVERVIEW
9.2.1.2. PRODUCT LIST
9.2.1.3. STRENGTHS & CHALLENGES
9.2.2. GOOGLE
9.2.2.1. COMPANY OVERVIEW
9.2.2.2. PRODUCT LIST
9.2.2.3. STRENGTHS & CHALLENGES
9.2.3. IBM CORPORATION
9.2.3.1. COMPANY OVERVIEW
9.2.3.2. PRODUCT LIST
9.2.3.3. STRENGTHS & CHALLENGES
9.2.4. INTEL CORPORATION
9.2.4.1. COMPANY OVERVIEW
9.2.4.2. PRODUCT LIST
9.2.4.3. STRENGTHS & CHALLENGES
9.2.5. MEDTRONIC PLC
9.2.5.1. COMPANY OVERVIEW
9.2.5.2. PRODUCT LIST
9.2.5.3. STRENGTHS & CHALLENGES
9.2.6. MICROSOFT CORPORATION
9.2.6.1. COMPANY OVERVIEW
9.2.6.2. PRODUCT LIST
9.2.6.3. STRENGTHS & CHALLENGES
9.2.7. NVIDIA CORPORATION
9.2.7.1. COMPANY OVERVIEW
9.2.7.2. PRODUCT LIST
9.2.7.3. STRENGTHS & CHALLENGES
9.2.8. STRYKER CORPORATION
9.2.8.1. COMPANY OVERVIEW
9.2.8.2. PRODUCT LIST
9.2.8.3. STRENGTHS & CHALLENGES
9.2.9. SIEMENS HEALTHINEERS
9.2.9.1. COMPANY OVERVIEW
9.2.9.2. PRODUCT LIST
9.2.9.3. STRENGTHS & CHALLENGES

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野の最新刊レポート

  • 本レポートと同分野の最新刊レポートはありません。

Inkwood Research社の
Fatal error: Uncaught TypeError: Cannot access offset of type string on string in /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/templates_c/58b4bde6a9738f3389cd7dea7f4ef5c62fdc6c54_0.file.auto_report.tpl.php:571 Stack trace: #0 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_template_resource_base.php(123): content_68a805fa34b2e0_16717164() #1 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_template_compiled.php(114): Smarty_Template_Resource_Base->getRenderedTemplateCode() #2 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_internal_template.php(216): Smarty_Template_Compiled->render() #3 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_internal_template.php(385): Smarty_Internal_Template->render() #4 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/templates_c/f20300271f4eb0fb4a2cf788aaabb06be5646d19_0.file.frame-FULL.tpl.php(278): Smarty_Internal_Template->_subTemplateRender() #5 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_template_resource_base.php(123): content_68a805fa26a288_46622063() #6 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_template_compiled.php(114): Smarty_Template_Resource_Base->getRenderedTemplateCode() #7 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_internal_template.php(216): Smarty_Template_Compiled->render() #8 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_internal_templatebase.php(238): Smarty_Internal_Template->render() #9 /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/libs/sysplugins/smarty_internal_templatebase.php(134): Smarty_Internal_TemplateBase->_execute() #10 /var/www/vhosts/dri.co.jp/httpdocs/auto/show_report.php(776): Smarty_Internal_TemplateBase->display() #11 {main} thrown in /var/www/vhosts/dri.co.jp/httpdocs/PHPLibs/Smarty/templates_c/58b4bde6a9738f3389cd7dea7f4ef5c62fdc6c54_0.file.auto_report.tpl.php on line 571