世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

IoT in Water Quality Management Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component (Hardware, Software, Services), By Deployment Mode (On-Premises, Cloud-Based, Hybrid), By End-User (Municipal, Industrial, Residential, Commercial, Agricultural), By Region, and By Competition, 2020-2030F 2020-2030F

IoT in Water Quality Management Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component (Hardware, Software, Services), By Deployment Mode (On-Premises, Cloud-Based, Hybrid), By End-User (Municipal, Industrial, Residential, Commercial, Agricultural), By Region, and By Competition, 2020-2030F 2020-2030F


Market Overview The Global IoT in Water Quality Management Market was valued at USD 2.99 billion in 2024 and is projected to reach USD 7.44 billion by 2030, growing at a CAGR of 16.23% during the ... もっと見る

 

 

出版社 出版年月 電子版価格 納期 ページ数 言語
TechSci Research
テックサイリサーチ
2025年7月14日 US$4,500
シングルユーザライセンス
ライセンス・価格情報
注文方法はこちら
PDF:2営業日程度 185 英語

 

Summary

Market Overview
The Global IoT in Water Quality Management Market was valued at USD 2.99 billion in 2024 and is projected to reach USD 7.44 billion by 2030, growing at a CAGR of 16.23% during the forecast period. This market is being driven by rising concerns over water contamination, increasing demand for safe and potable water, and growing adoption of smart technologies for real-time monitoring and efficient water resource management. IoT-based solutions enable continuous, remote tracking of crucial water quality parameters—including pH, turbidity, dissolved oxygen, and conductivity—across municipal, industrial, and agricultural sectors. As urban populations expand and water scarcity intensifies, governments and private stakeholders are investing in connected infrastructure to ensure water safety, optimize treatment processes, and comply with environmental regulations. Furthermore, the integration of IoT with AI, cloud computing, and big data analytics is enabling predictive maintenance and early detection of pollution events, which enhances response capabilities and reduces operational costs. These developments are expected to accelerate the deployment of IoT solutions in water quality management worldwide.
Key Market Drivers
Rising Global Water Pollution Levels
The increasing contamination of freshwater resources is a key factor driving demand for IoT-based water quality monitoring. With over 80% of global wastewater being discharged untreated, real-time monitoring has become essential to track pollutants and ensure compliance with regulatory standards. IoT sensors and platforms allow early detection of contaminants such as nitrates, heavy metals, and pathogens, helping utilities and industries respond swiftly to potential threats. Countries like India and China are adopting smart monitoring technologies in urban centers, while developed economies such as the United States are leveraging IoT to oversee aging water infrastructure. The ability of IoT systems to transmit data at intervals of just a few seconds enables high-accuracy, real-time reporting, improving transparency and public health outcomes.
Key Market Challenges
High Initial Investment and Operational Costs
Despite the operational efficiencies and regulatory benefits offered by IoT in water quality management, the high capital expenditure required for implementation remains a significant barrier. Deploying sensors, communication networks, cloud platforms, and analytics tools involves substantial upfront costs. Additionally, integration with existing legacy infrastructure—particularly in older municipal systems and industrial plants—can be complex and expensive. Ongoing operational costs, such as calibration, data subscriptions, and skilled technical support, further add to the financial burden. These challenges are particularly pronounced in small utilities and developing regions, where budgets for advanced technology deployment are often limited.
Key Market Trends
Shift Toward Cloud-Based Water Monitoring Platforms
The market is witnessing a strong shift from traditional on-premise systems toward cloud-based platforms for water quality monitoring. Cloud-enabled IoT solutions offer scalable data storage, centralized management, and remote access, making them especially useful for monitoring multiple sites across vast geographic areas. This trend supports faster decision-making in response to pollution events, equipment failures, or environmental changes. In 2023, nearly half of all global IoT-based water monitoring deployments featured either fully cloud-based or hybrid architectures. Major players like Siemens, Schneider Electric, and Xylem are offering cloud-native platforms with integrated analytics, customizable dashboards, and real-time alerts. This evolution enhances the efficiency and flexibility of water quality management across sectors.
Key Market Players
• Xylem Inc.
• ABB Ltd.
• Siemens AG
• General Electric
• Honeywell International Inc.
• Danaher Corporation
• Schneider Electric SE
• Libelium
• Badger Meter Inc.
• Trimble Inc.
Report Scope:
In this report, the Global IoT in Water Quality Management Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
• IoT in Water Quality Management Market, By Component:
o Hardware
o Software
o Services
• IoT in Water Quality Management Market, By Deployment Mode:
o On-Premises
o Cloud-Based
o Hybrid
• IoT in Water Quality Management Market, By End-User:
o Municipal
o Industrial
o Residential
o Commercial
o Agricultural
• IoT in Water Quality Management Market, By Region:
o North America
  § United States
  § Canada
  § Mexico
o Europe
  § Germany
  § France
  § United Kingdom
  § Italy
  § Spain
o South America
  § Brazil
  § Argentina
  § Colombia
o Asia-Pacific
  § China
  § India
  § Japan
  § South Korea
  § Australia
o Middle East & Africa
  § Saudi Arabia
  § UAE
  § South Africa
Competitive Landscape
Company Profiles: Detailed analysis of the major companies present in the Global IoT in Water Quality Management Market.
Available Customizations:
Global IoT in Water Quality Management Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:
Company Information
• Detailed analysis and profiling of additional market players (up to five).


ページTOPに戻る


Table of Contents

1. Product Overview
1.1. Market Definition
1.2. Scope of the Market
1.2.1. Markets Covered
1.2.2. Years Considered for Study
1.2.3. Key Market Segmentations
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, and Trends
4. Voice of Customer
5. Global IoT in Water Quality Management Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Component (Hardware, Software, Services)
5.2.2. By Deployment Mode (On-Premises, Cloud-Based, Hybrid)
5.2.3. By End-User (Municipal, Industrial, Residential, Commercial, Agricultural)
5.2.4. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
5.3. By Company (2024)
5.4. Market Map
6. North America IoT in Water Quality Management Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Component
6.2.2. By Deployment Mode
6.2.3. By End-User
6.2.4. By Country
6.3. North America: Country Analysis
6.3.1. United States IoT in Water Quality Management Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Component
6.3.1.2.2. By Deployment Mode
6.3.1.2.3. By End-User
6.3.2. Canada IoT in Water Quality Management Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Component
6.3.2.2.2. By Deployment Mode
6.3.2.2.3. By End-User
6.3.3. Mexico IoT in Water Quality Management Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Component
6.3.3.2.2. By Deployment Mode
6.3.3.2.3. By End-User
7. Europe IoT in Water Quality Management Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Component
7.2.2. By Deployment Mode
7.2.3. By End-User
7.2.4. By Country
7.3. Europe: Country Analysis
7.3.1. Germany IoT in Water Quality Management Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Component
7.3.1.2.2. By Deployment Mode
7.3.1.2.3. By End-User
7.3.2. France IoT in Water Quality Management Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Component
7.3.2.2.2. By Deployment Mode
7.3.2.2.3. By End-User
7.3.3. United Kingdom IoT in Water Quality Management Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Component
7.3.3.2.2. By Deployment Mode
7.3.3.2.3. By End-User
7.3.4. Italy IoT in Water Quality Management Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Component
7.3.4.2.2. By Deployment Mode
7.3.4.2.3. By End-User
7.3.5. Spain IoT in Water Quality Management Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Component
7.3.5.2.2. By Deployment Mode
7.3.5.2.3. By End-User
8. Asia Pacific IoT in Water Quality Management Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Component
8.2.2. By Deployment Mode
8.2.3. By End-User
8.2.4. By Country
8.3. Asia Pacific: Country Analysis
8.3.1. China IoT in Water Quality Management Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Component
8.3.1.2.2. By Deployment Mode
8.3.1.2.3. By End-User
8.3.2. India IoT in Water Quality Management Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Component
8.3.2.2.2. By Deployment Mode
8.3.2.2.3. By End-User
8.3.3. Japan IoT in Water Quality Management Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Component
8.3.3.2.2. By Deployment Mode
8.3.3.2.3. By End-User
8.3.4. South Korea IoT in Water Quality Management Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Component
8.3.4.2.2. By Deployment Mode
8.3.4.2.3. By End-User
8.3.5. Australia IoT in Water Quality Management Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Component
8.3.5.2.2. By Deployment Mode
8.3.5.2.3. By End-User
9. Middle East & Africa IoT in Water Quality Management Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Component
9.2.2. By Deployment Mode
9.2.3. By End-User
9.2.4. By Country
9.3. Middle East & Africa: Country Analysis
9.3.1. Saudi Arabia IoT in Water Quality Management Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Component
9.3.1.2.2. By Deployment Mode
9.3.1.2.3. By End-User
9.3.2. UAE IoT in Water Quality Management Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Component
9.3.2.2.2. By Deployment Mode
9.3.2.2.3. By End-User
9.3.3. South Africa IoT in Water Quality Management Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Component
9.3.3.2.2. By Deployment Mode
9.3.3.2.3. By End-User
10. South America IoT in Water Quality Management Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Component
10.2.2. By Deployment Mode
10.2.3. By End-User
10.2.4. By Country
10.3. South America: Country Analysis
10.3.1. Brazil IoT in Water Quality Management Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Component
10.3.1.2.2. By Deployment Mode
10.3.1.2.3. By End-User
10.3.2. Colombia IoT in Water Quality Management Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Component
10.3.2.2.2. By Deployment Mode
10.3.2.2.3. By End-User
10.3.3. Argentina IoT in Water Quality Management Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Component
10.3.3.2.2. By Deployment Mode
10.3.3.2.3. By End-User
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends and Developments
12.1. Merger & Acquisition (If Any)
12.2. Product Launches (If Any)
12.3. Recent Developments
13. Company Profiles
13.1. Xylem Inc.
13.1.1. Business Overview
13.1.2. Key Revenue and Financials
13.1.3. Recent Developments
13.1.4. Key Personnel
13.1.5. Key Product/Services Offered
13.2. ABB Ltd.
13.3. Siemens AG
13.4. General Electric
13.5. Honeywell International Inc.
13.6. Danaher Corporation
13.7. Schneider Electric SE
13.8. Libelium
13.9. Badger Meter Inc.
13.10. Trimble Inc.
14. Strategic Recommendations
15. About Us & Disclaimer

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(無線・モバイル・ワイヤレス)の最新刊レポート

TechSci Research社の 情報通信技術分野 での最新刊レポート

本レポートと同じKEY WORD(iot)の最新刊レポート


よくあるご質問


TechSci Research社はどのような調査会社ですか?


テックサイリサーチ(TechSci Research)は、カナダ、英国、インドに拠点を持ち、化学、IT、環境、消費財と小売、自動車、エネルギーと発電の市場など、多様な産業や地域を対象とした調査・出版活... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

 

2025/08/25 10:27

148.45 円

173.94 円

202.98 円

ページTOPに戻る