世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

Global Power System State Estimator Market Size Study & Forecast, by Type (Static State Estimator, Dynamic State Estimator), by Application (Transmission Network, Distribution Network, Microgrid), by Deployment Mode (On-Premise, Cloud-Based), by End User (Utilities, Transmission System Operators, Distribution System Operators), by Technology (Weighted Least Squares, Maximum Likelihood, Bayesian Estimation, Artificial Intelligence (AI)) and Regional Forecasts 2025-2035

Global Power System State Estimator Market Size Study & Forecast, by Type (Static State Estimator, Dynamic State Estimator), by Application (Transmission Network, Distribution Network, Microgrid), by Deployment Mode (On-Premise, Cloud-Based), by End User (Utilities, Transmission System Operators, Distribution System Operators), by Technology (Weighted Least Squares, Maximum Likelihood, Bayesian Estimation, Artificial Intelligence (AI)) and Regional Forecasts 2025-2035


The Global Power System State Estimator Market is valued at approximately USD 2.83 billion in 2024 and is poised to register a moderate yet steady CAGR of 3.64% over the forecast period 2025-2035. ... もっと見る

 

 

出版社 出版年月 電子版価格 納期 ページ数 言語
Bizwit Research & Consulting LLP
ビズウィットリサーチ&コンサルティング
2024年11月15日 US$4,950
シングルユーザライセンス(印刷不可)
ライセンス・価格情報
注文方法はこちら
3-5営業日以内 285 英語

 

Summary

The Global Power System State Estimator Market is valued at approximately USD 2.83 billion in 2024 and is poised to register a moderate yet steady CAGR of 3.64% over the forecast period 2025-2035. A power system state estimator serves as the brain of modern grid control centers, enabling real-time visibility into the operational health of electric grids. As power infrastructure grows increasingly complex—with the influx of distributed energy resources, bidirectional energy flow, and renewable integration—utilities and grid operators are turning to state estimators to derive actionable insights from noisy, incomplete, or outdated data. These software-driven tools improve operational awareness, ensure optimal grid performance, and support the implementation of advanced distribution and transmission automation strategies. Furthermore, regulatory authorities and energy agencies worldwide are intensifying grid modernization mandates, thereby accelerating demand for next-generation estimators tailored for dynamic, AI-driven grid environments.
The surge in demand for renewable integration, decentralized power generation, and grid flexibility is fueling the adoption of state estimation technologies. Dynamic state estimators are gaining traction due to their ability to provide near real-time analytics, which is essential for managing unstable grids and frequency variation—challenges increasingly common in wind and solar-dominated networks. Cloud-based solutions are also disrupting the traditional on-premise model by offering scalable, cost-efficient deployment and seamless data aggregation from sensors, smart meters, and phasor measurement units (PMUs). Meanwhile, utility operators are deploying artificial intelligence and machine learning algorithms for predictive grid analytics, anomaly detection, and voltage stability forecasting. As electric vehicles and prosumer behavior reshape load patterns, grid stakeholders are under mounting pressure to adopt intelligent systems that not only estimate, but also anticipate system states.
From a geographical standpoint, North America currently holds a dominant position in the global market, underpinned by a mature grid infrastructure, proactive smart grid policies, and aggressive deployment of renewable energy. The United States, in particular, is leading innovation in real-time grid monitoring with high adoption of PMUs and synchrophasor technologies. Europe follows closely, with widespread adoption driven by the EU’s clean energy directive and rising investments in interconnection projects and smart substations. Countries like Germany and the UK are focusing heavily on digitalizing transmission infrastructure to improve cross-border grid reliability. Meanwhile, the Asia Pacific region is projected to exhibit the fastest growth rate through 2035, propelled by large-scale electrification efforts, urban energy management reforms, and the integration of AI in grid planning. Countries such as China, India, and Japan are investing heavily in transmission upgrades and pilot projects involving dynamic estimation and AI-enabled power quality monitoring. Latin America and the Middle East & Africa are gradually adopting power system state estimators due to expanding electrification efforts, smart grid funding, and national grid modernization blueprints.
Major market player included in this report are:
• ABB Ltd.
• Siemens AG
• General Electric Company
• Schneider Electric SE
• Oracle Corporation
• Hitachi Energy Ltd.
• Mitsubishi Electric Corporation
• ETAP (Operation Technology, Inc.)
• Open Systems International, Inc. (OSI)
• Itron Inc.
• Schneider Electric DMS NS
• Nexant Inc.
• Grid4C
• Eaton Corporation
• GE Grid Solutions
Global Power System State Estimator Market Report Scope:
• Historical Data – 2023, 2024
• Base Year for Estimation – 2024
• Forecast period – 2025-2035
• Report Coverage – Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
• Regional Scope – North America; Europe; Asia Pacific; Latin America; Middle East & Africa
• Customization Scope – Free report customization (equivalent up to 8 analysts’ working hours) with purchase. Addition or alteration to country, regional & segment scope*
The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values for the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within the countries involved in the study. The report also provides detailed information about crucial aspects, such as driving factors and challenges, which will define the future growth of the market. Additionally, it incorporates potential opportunities in micro-markets for stakeholders to invest, along with a detailed analysis of the competitive landscape and product offerings of key players.
The detailed segments and sub-segments of the market are explained below:
By Type:
• Static State Estimator
• Dynamic State Estimator
By Application:
• Transmission Network
• Distribution Network
• Microgrid
By Deployment Mode:
• On-Premise
• Cloud-Based
By End User:
• Utilities
• Transmission System Operators
• Distribution System Operators
By Technology:
• Weighted Least Squares
• Maximum Likelihood
• Bayesian Estimation
• Artificial Intelligence (AI)
By Region:
North America
• U.S.
• Canada
Europe
• UK
• Germany
• France
• Spain
• Italy
• Rest of Europe
Asia Pacific
• China
• India
• Japan
• Australia
• South Korea
• Rest of Asia Pacific
Latin America
• Brazil
• Mexico
Middle East & Africa
• UAE
• Saudi Arabia
• South Africa
• Rest of Middle East & Africa
Key Takeaways:
• Market Estimates & Forecast for 10 years from 2025 to 2035.
• Annualized revenues and regional level analysis for each market segment.
• Detailed analysis of geographical landscape with Country level analysis of major regions.
• Competitive landscape with information on major players in the market.
• Analysis of key business strategies and recommendations on future market approach.
• Analysis of competitive structure of the market.
• Demand side and supply side analysis of the market.


ページTOPに戻る


Table of Contents

Table of Contents
Chapter 1. Global Power System State Estimator Market Report Scope & Methodology
1.1. Research Objective
1.2. Research Methodology
  1.2.1. Forecast Model
  1.2.2. Desk Research
  1.2.3. Top Down and Bottom-Up Approach
1.3. Research Attributes
1.4. Scope of the Study
  1.4.1. Market Definition
  1.4.2. Market Segmentation
1.5. Research Assumption
  1.5.1. Inclusion & Exclusion
  1.5.2. Limitations
  1.5.3. Years Considered for the Study
Chapter 2. Executive Summary
2.1. CEO/CXO Standpoint
2.2. Strategic Insights
2.3. ESG Analysis
2.4. Key Findings
Chapter 3. Global Power System State Estimator Market Forces Analysis (2024–2035)
3.1. Market Forces Shaping The Global Power System State Estimator Market
3.2. Drivers
  3.2.1. Increasing demand for real-time monitoring of electric grid systems
  3.2.2. Growth in renewable energy integration and decentralized generation
3.3. Restraints
  3.3.1. High capital investment and complexity in system upgrades
  3.3.2. Cybersecurity threats and data privacy concerns
3.4. Opportunities
  3.4.1. Rising adoption of AI and machine learning in grid optimization
  3.4.2. Cloud-based deployment models enabling scalable and cost-effective implementation
Chapter 4. Global Power System State Estimator Industry Analysis
4.1. Porter’s 5 Forces Model
  4.1.1. Bargaining Power of Buyer
  4.1.2. Bargaining Power of Supplier
  4.1.3. Threat of New Entrants
  4.1.4. Threat of Substitutes
  4.1.5. Competitive Rivalry
4.2. Porter’s 5 Force Forecast Model (2024–2035)
4.3. PESTEL Analysis
  4.3.1. Political
  4.3.2. Economical
  4.3.3. Social
  4.3.4. Technological
  4.3.5. Environmental
  4.3.6. Legal
4.4. Top Investment Opportunities
4.5. Top Winning Strategies (2025)
4.6. Market Share Analysis (2024–2025)
4.7. Global Pricing Analysis and Trends 2025
4.8. Analyst Recommendation & Conclusion
Chapter 5. Global Power System State Estimator Market Size & Forecasts by Type 2025–2035
5.1. Market Overview
5.2. Global Power System State Estimator Market Performance - Potential Analysis (2025)
5.3. Static State Estimator
  5.3.1. Top Countries Breakdown Estimates & Forecasts, 2024–2035
  5.3.2. Market Size Analysis, by Region, 2025–2035
5.4. Dynamic State Estimator
  5.4.1. Top Countries Breakdown Estimates & Forecasts, 2024–2035
  5.4.2. Market Size Analysis, by Region, 2025–2035
Chapter 6. Global Power System State Estimator Market Size & Forecasts by Application 2025–2035
6.1. Market Overview
6.2. Global Power System State Estimator Market Performance - Potential Analysis (2025)
6.3. Transmission Network
  6.3.1. Top Countries Breakdown Estimates & Forecasts, 2024–2035
  6.3.2. Market Size Analysis, by Region, 2025–2035
6.4. Distribution Network
  6.4.1. Top Countries Breakdown Estimates & Forecasts, 2024–2035
  6.4.2. Market Size Analysis, by Region, 2025–2035
6.5. Microgrid
  6.5.1. Top Countries Breakdown Estimates & Forecasts, 2024–2035
  6.5.2. Market Size Analysis, by Region, 2025–2035
Chapter 7. Global Power System State Estimator Market Size & Forecasts by Deployment Mode 2025–2035
7.1. Market Overview
7.2. On-Premise
7.3. Cloud-Based
Chapter 8. Global Power System State Estimator Market Size & Forecasts by End User 2025–2035
8.1. Market Overview
8.2. Utilities
8.3. Transmission System Operators
8.4. Distribution System Operators
Chapter 9. Global Power System State Estimator Market Size & Forecasts by Technology 2025–2035
9.1. Market Overview
9.2. Weighted Least Squares
9.3. Maximum Likelihood
9.4. Bayesian Estimation
9.5. Artificial Intelligence (AI)
Chapter 10. Global Power System State Estimator Market Size & Forecasts by Region 2025–2035
10.1. Global Market Snapshot
10.2. Top Leading & Emerging Countries
10.3. North America Power System State Estimator Market
10.3.1. U.S.
  10.3.1.1. Type Breakdown Size & Forecasts, 2025–2035
  10.3.1.2. Application Breakdown Size & Forecasts, 2025–2035
10.3.2. Canada
  10.3.2.1. Type Breakdown Size & Forecasts, 2025–2035
  10.3.2.2. Application Breakdown Size & Forecasts, 2025–2035
10.4. Europe Power System State Estimator Market
10.4.1. UK
10.4.2. Germany
10.4.3. France
10.4.4. Spain
10.4.5. Italy
10.4.6. Rest of Europe
10.5. Asia Pacific Power System State Estimator Market
10.5.1. China
10.5.2. India
10.5.3. Japan
10.5.4. Australia
10.5.5. South Korea
10.5.6. Rest of Asia Pacific
10.6. Latin America Power System State Estimator Market
10.6.1. Brazil
10.6.2. Mexico
10.7. Middle East & Africa Power System State Estimator Market
10.7.1. UAE
10.7.2. Saudi Arabia
10.7.3. South Africa
10.7.4. Rest of Middle East & Africa
Chapter 11. Competitive Intelligence
11.1. Top Market Strategies
11.2. ABB Ltd.
  11.2.1. Company Overview
  11.2.2. Key Executives
  11.2.3. Company Snapshot
  11.2.4. Financial Performance (Subject to Data Availability)
  11.2.5. Product/Services Port
  11.2.6. Recent Development
  11.2.7. Market Strategies
  11.2.8. SWOT Analysis
11.3. Siemens AG
11.4. General Electric Company
11.5. Schneider Electric SE
11.6. Oracle Corporation
11.7. Hitachi Energy Ltd.
11.8. Mitsubishi Electric Corporation
11.9. ETAP (Operation Technology, Inc.)
11.10. Open Systems International, Inc. (OSI)
11.11. Itron Inc.
11.12. Schneider Electric DMS NS
11.13. Nexant Inc.
11.14. Grid4C
11.15. Eaton Corporation
11.16. GE Grid Solutions

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(環境・エネルギー)の最新刊レポート

Bizwit Research & Consulting LLP社の エネルギー分野 での最新刊レポート

本レポートと同じKEY WORD(power)の最新刊レポート


よくあるご質問


Bizwit Research & Consulting LLP社はどのような調査会社ですか?


Bizwit Research & Consulting (Bizwit Research & Consulting LLP)は世界の多様なマクロおよびマイクロ経済の動向を継続的に調査しています。 ... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

 

2025/08/25 10:27

148.45 円

173.94 円

202.98 円

ページTOPに戻る