世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

ロボティクス用センサ市場 2017-2027年:技術、市場と予測:マシンビジョン、力覚センサ、センサフュージョン:協働ロボット、先進モバイルロボティクス、自動運転への実現技術

Sensors for Robotics - Technologies, Markets and Forecasts 2017-2027

Machine vision, force sensing and sensor fusion: Enabling technologies for collaborative robots, advanced mobile robotics and autonomous driving

 

出版社 出版年月電子版価格 ページ数
IDTechEx
アイディーテックエックス
2017年2月GBP4,650
電子ファイル(1-5ユーザライセンス)
228

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。

サマリー

このレポートは世界のロボティクスで使われるセンサー市場を調査し、事例研究や用途別の分析、収益などの市場予測を掲載してます。

主な掲載内容  ※目次より抜粋

  1. エグゼクティブサマリーと結論
  2. ロボティクスセンシングのイントロ
  3. 協働ロボット
  4. 倉庫/ロジスティクス向けロボティクス - 自律移動ロボット
  5. 家庭用ロボット
  6. 自動運転車:自動車とドローン
  7. 農業用ロボット
  8. ロボットの光学センサ - 視覚制御型ロボット
  9. 移動ロボットと自動運転車の視覚:LIDARの出現
  10. ロボティクスに使われるその他の光学センサ - HYPERとマルチスペクトル画像センサ
  11. 家庭用ロボットのセンサ
  12. ロボットの力覚センサ
  13. 市場予測
  14. 企業概要

Report Details

The report focuses on sensor technologies and components in robotics applications that are currently under development and are enjoying increased visibility, investment and growth. This is mainly due to the capabilities sensors are expected to enable in robotics. Simply put, smarter, sensor-enabled robots that can make decisions based on sensory feedback are expected to have massive societal impact, as such robotic systems will proliferate in many more market segments than current robotic systems address. Vision systems alone will be a market of $5.7 Billion by 2027, force sensing will reach over $6.9 Billion while the multiple sensors in domestic robots will account for $3.6 Billion, representing almost 30% of their value.

 
The report focuses on:
  • Visual perception sensors, which will remain a key element in the development and growth of the market for robotic sensors as well as key advances in vision-related hardware such as the development of high speed -low noise CMOS image sensors, active lighting schemes as well as the development of advanced 2D and 3D vision. LIDAR systems and others..
 
Revenues of visions systems
 
Source IDTechEx
 
 
  • Force sensing which is allowing for improved safety, enabling the roll out of robots that comply with regulatory requirements in limiting forces. This force limiting capability has led to the emergence of robotic systems that can safely work alongside humans.
  • At the same time force sensing enables gradations in applied forces at the end-effector, hence widening the range of parts that robots can handle. As a result, we are witnessing an expansion of the use of robotic systems in segments that were previously incompatible with existing robotic systems.
 
End effector force sensing revenues
 
Source IDTechEx
 
As a result of the introduction of these new features in robots, increased uptake of robotic systems in new and existing sectors and applications is expected; it is due to improved performance and the introduction of robots with new and expanded capabilities. These include but are not limited to communication capabilities, environmental perception, and sensor-enabled mobility which in turn enable concepts such as collaborative robots, advanced mobile robots and autonomous vehicles. The features of these robots as well as their sensor requirements are described in detail in the report.
 
The effects of the development of the above key sensor technologies are studied and ten year forecasts are given for sensing systems on robotic applications such as:
  • industrial and collaborative robotics,
  • autonomous mobile robotics,
  • autonomous vehicles and automated driving
  • robotic drones
  • agricultural robots
  • domestic robots.
 
Overall, the timing factor in the above considerations has been critical; a few key technology developments in recent years aligned in order to lead to the growth of robotic sensing we are experiencing. For instance, massive strides in software development and the creation of learning algorithms for data fusion went hand in hand with significant costs reductions in sensor componentry while achieving high performance. These trends, that are expected to continue, have influenced the underlying assumptions in this report, and have shaped the forecasts within it.

 



目次

Table of Contents

1.    EXECUTIVE SUMMARY AND CONCLUSIONS
1.1.    Introduction
1.2.    The rise of artificial intelligence
1.3.    Drivers for increasing robotic adoption - the 4th industrial revolution
1.4.    Drivers for increasing robotic adoption - collaborative robotics
1.5.    Drivers for increasing robotic adoption - mobile robotics & autonomous driving
1.6.    Robotic visual and force sensing
1.7.    Robotic sensing: why now?
1.8.    Robotic sensing
1.9.    Robotic sensing forecasts
1.10.    Ten year forecasts for vision systems (units, market value)
1.11.    Ten year forecasts for force sensing (market value)
1.12.    Ten year forecasts for domestic robots (market value)
1.13.    The ethics of artificial intelligence
2.    INTRODUCTION
2.1.    Introduction to robotic sensing
2.2.    Challenges in robotics and robotic sensing (1)
2.3.    Challenges in robotics and robotic sensing (2)
2.4.    Challenges in robotics and robotic sensing (3)
2.5.    Definitions (1)
2.6.    Definitions (2)
2.7.    Definitions (3)
2.8.    Definitions (4)
3.    COLLABORATIVE ROBOTS
3.1.    Industrial robots
3.2.    Collaborative robot definitions
3.3.    The force limited robot: a true collaborative robot
3.4.    Force limited collaborative robots: features (1)
3.5.    Force limited collaborative robots: features (2)
3.6.    Force limited collaborative robots - case studies (1)
3.7.    Force limited collaborative robots - case studies (2)
3.8.    Force limited collaborative robots - case studies (3)
3.9.    Force limited collaborative robots - case studies (4)
3.10.    Force limited collaborative robots - case studies (5)
3.11.    Force limited collaborative robots - case studies (6)
3.12.    A comparison of collaborative robots
3.13.    A comparison of force limited robots
4.    AUTONOMOUS MOBILE ROBOTICS (AMR)
4.1.    Mobile robots in warehouse/logistics applications
4.2.    KIVA
4.3.    ... before KIVA was Amazon
4.4.    ... before KIVA was Amazon (2) on the importance of software and hardware
4.5.    ... before KIVA was Amazon (3) the wisdom of the crowd
4.6.    An expanded definition of collaborative robots?
4.7.    Shuttle robots: pricing
4.8.    AMRs in retail (1)
4.9.    AMRs in retail (2)
4.10.    AMRs in retail (3)
4.11.    AMRs in specialized applications - medical
4.12.    AMRs in specialized applications - medical (2)
5.    DOMESTIC ROBOTS
5.1.    Introduction
5.2.    Robotic cleaners
5.3.    Robotic lawnmowers
6.    AUTONOMOUS VEHICLES: CARS AND DRONES
6.1.    Autonomous vehicles and the concept of redundancy in safety
6.2.    Sensor fusion as A.I.
6.3.    Testing Google's autonomous vehicles
6.4.    LIDAR - cost reduction strategies
6.5.    LIDAR - investment
6.6.    Robotic autonomous cars - autonomy definitions
6.7.    Robotic autonomous cars - forecasts
6.8.    Robotic drones
6.9.    Robotic drones/UAVs - levels of autonomy
7.    AGRICULTURAL ROBOTS
7.1.    Drivers for automation in agriculture
7.2.    Fully autonomous driverless large tractors
7.3.    Autonomous weed killing robots (LIDAR navigation)
7.4.    Hyperspectral imaging: the future of precision agriculture
7.5.    Benefits of using aerial imaging in farming
7.6.    Unmanned agriculture drones on the market
8.    OPTICAL SENSORS IN ROBOTS - VISION GUIDED ROBOTICS
8.1.    Bin picking & vision in industrial robotics
8.2.    The need for robotic vision
8.3.    Vision guided robotics (VGR) technologies
8.4.    2D & 3D machine vision
8.5.    3D machine vision - stereo cameras
8.6.    3D machine vision - structure light
8.7.    3D machine vision - projected texture
8.8.    3D machine vision - light profiling
8.9.    3D machine vision - LASER profilers & time of flight
8.10.    The players
8.11.    Innovation in image sensing - hardware improvements in VGR
8.12.    Innovation in image sensing - iniLabs -DVS
8.13.    Innovation in image sensing - SNAP Sensor
8.14.    Vision systems in industrial robots - ten year forecasts (numbers)
8.15.    Vision systems in industrial robots - ten year forecasts (value)
8.16.    Vision systems in industrial collaborative robots - ten year forecasts (numbers and value)
8.17.    Vision systems in industrial collaborative robots - ten year forecasts (numbers)
8.18.    Vision systems in industrial collaborative robots - ten year forecasts (value)
9.    VISION IN MOBILE ROBOTICS AND AUTONOMOUS VEHICLES: THE EMERGENCE OF LIDAR
9.1.    Vision in autonomous vehicles and mobile robotics
9.2.    LIDAR - an overview
9.3.    LIDAR: LIght Detection And Ranging
9.4.    Principle of operation
9.5.    Basic components
9.6.    LIDAR or... LIDAR?
9.7.    Velodyne 3D LIDAR
9.8.    Neptec Opal
9.9.    Scanse
9.10.    Comparing low cost LIDAR options
9.11.    Performance comparison of different LIDARs on the market or in development
9.12.    Quanergy
9.13.    M8 Specifications
9.14.    innoviz
9.15.    Leddar Tech solid state LIDAR
9.16.    MIT and DARPA: Single chip LIDAR
9.17.    Other LIDAR related products: SLAM: Simultaneous localization and mapping
9.18.    Other LIDAR related products: 3D Flash LIDAR camera from Advanced Scientific Concepts
9.19.    Flash LIDAR: A visualization from ASC - Continental
9.20.    Scanning methods for outdoor LIDAR applications
9.21.    Phased array - examples
9.22.    Phased array - examples (2)
9.23.    MEMS mirror scanners (1)
9.24.    MEMS mirror scanners (2)
9.25.    Toposens - Terabee : complementing LIDAR with ultrasound
9.26.    Sonar - Radar - Cameras
9.27.    Comparing LIDAR, radar and camera performance
9.28.    Vision systems in advanced mobile robotics; logistics, retail and other applications - ten year forecasts (units, market value)
9.29.    Ten year forecasts for AMRs (units)
9.30.    Ten year forecasts AMRs (market value)
9.31.    Ten year forecasts for vision in AMR (total market value)
9.32.    Vision systems in advanced mobile robotics: Drones forecasts
9.33.    Vision systems in mobile robotics: Fully autonomous car forecasts
10.    OTHER OPTICAL SENSORS IN ROBOTS - HYPER- AND MULTISPECTRAL IMAGE SENSORS
10.1.    Hyperspectral image sensors
10.2.    Hyperspectral imaging in other applications
10.3.    Hyperspectral imaging sensors on the market
10.4.    Common multi-spectral sensors on the market
10.5.    GeoVantage
10.6.    Headwall hyperspectral cameras
10.7.    Hyper and multispectral vision systems in agricultural robots - ten year forecasts (units, unit price, market value)
10.8.    Ten year forecasts (units)
10.9.    Ten year forecasts (market value)
11.    SENSORS IN DOMESTIC ROBOTS
11.1.    Introduction
11.2.    Ten year forecasts (units, price, market value)
11.3.    Ten year forecasts (number of units)
11.4.    Ten year forecasts (average price)
11.5.    Ten year forecasts (total market value)
12.    FORCE SENSING IN ROBOTICS
12.1.    Force sensing in robotics
12.2.    EPSON piezoresistive force sensors
12.3.    Other force sensors
12.4.    End effector force sensing in industrial robots - ten year market forecasts (units, market value)
12.5.    Ten year market forecasts (units)
12.6.    Ten year market forecasts (total market value)
12.7.    End effector force sensing in collaborative robots - ten year market forecasts (units, market value)
12.8.    Ten year market forecasts (units)
12.9.    Ten year market forecasts (market value)
12.10.    Blue Danube: skins for collaborative robots
12.11.    Bosch APAS smart skin
12.12.    Carbon Robotics capacitive sensor
12.13.    Force sensing approaches for collaborative robots
12.14.    Force sensing approaches: series elastic actuators
12.15.    Joint-force sensing and force sensing skins collaborative robots - ten year forecasts (market value)
12.16.    Ten year forecast for collaborative robots (market value)
12.17.    Ten year forecast for force sensing skins (market value)
13.    MARKET FORECASTS
13.1.    Vision systems ten year forecasts for different robots (units, market value)
13.2.    Vision systems ten year forecasts for different robots (market value)
13.3.    Force sensing ten year forecasts (market value)
13.4.    Sensors for domestic robots ten year forecasts (market value)
14.    COMPANY PROFILES
14.1.    Bionic Robotics
14.2.    Carbon Robotics
14.3.    DeepField Robotics
14.4.    Fanuc Robotics
14.5.    iniLabs
14.6.    OptoForce Ltd
14.7.    Roboception
14.8.    Universal Robots
14.9.    Velodyne LiDAR

 

ページTOPに戻る

あなたが最近チェックしたレポート一覧

  • 最近チェックしたレポートはありません。

お問合は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのお問合せはこちらのフォームから承ります

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

<無料>メルマガに登録する

 

 

ページTOPに戻る