|
1. |
EXECUTIVE SUMMARY |
|
1.1. |
Molecular diagnostics (MDx) |
|
1.2. |
Drivers for the MDx markets |
|
1.3. |
What are the benefits and limitations of MDx? |
|
1.4. |
Working flow of MDx devices |
|
1.5. |
Key technologies for MDx: overview |
|
1.6. |
Market forecast for MDx technologies from 2020-2030 |
|
1.7. |
DNA microarray: high-throughput analysis of target regions in the genome |
|
1.8. |
Synthesis of DNA microarrays |
|
1.9. |
Key players for DNA microarrays |
|
1.10. |
Market share of DNA microarrays in 2019 |
|
1.11. |
Market forecast for microarrays devices from 2020-2030 |
|
1.12. |
Polymerase chain reaction (PCR): Process |
|
1.13. |
Real-Time PCR/ Quantitative PCR (qPCR) |
|
1.14. |
Digital PCR (dPCR) |
|
1.15. |
Key players for PCR devices |
|
1.16. |
Key players for PCR reagents/consumables |
|
1.17. |
Market share for PCR equipment in 2019 |
|
1.18. |
Market forecast for PCR devices from 2020-2030 |
|
1.19. |
DNA sequencing technology: first generation |
|
1.20. |
Next generation sequencing (NGS) |
|
1.21. |
3rd generation sequencing |
|
1.22. |
Future trends and opportunities |
|
1.23. |
Market share for DNA sequencers in 2019 |
|
1.24. |
Market forecast for DNA sequencers from 2020-2030 |
|
1.25. |
Miniaturized devices enable molecular diagnostics at point-of-care |
|
1.26. |
Market drivers for pushing MDx to the point-of-care |
|
1.27. |
Examples of POC MDx devices |
|
1.28. |
Cost of cartridges for POC MDx devices |
|
1.29. |
Key applications for molecular diagnostics |
|
1.30. |
MDx applications are divided into two categories |
|
1.31. |
Key players for Human Genetic Tests |
|
1.32. |
Key players for Microbial Tests |
|
1.33. |
Market forecast for MDx market segments from 2020-2030 |
|
1.34. |
Market forecast for molecular diagnostics for infectious diseases |
|
1.35. |
Market forecast for molecular diagnostics for direct-to-consumer |
|
1.36. |
Market forecast for molecular diagnostics for cancer diagnostics and liquid biopsy |
|
1.37. |
Market forecast for molecular diagnostics for companion diagnostics |
|
2. |
INTRODUCTION TO MOLECULAR DIAGNOSTICS |
|
2.1.1. |
Global healthcare trend |
|
2.1.2. |
US, Europe and Asia are the key markets |
|
2.1.3. |
Why the healthcare market is growing |
|
2.1.4. |
Molecular diagnostics (MDx) |
|
2.1.5. |
The central dogma: DNA, RNA and Proteins |
|
2.1.6. |
Key technologies for MDx: overview |
|
2.1.7. |
Drivers for the MDx markets |
|
2.1.8. |
Key applications for molecular diagnostics |
|
2.1.9. |
Clinical market for genomic testing is expanding |
|
2.1.10. |
All disease is a result of genes interacting with the environment |
|
2.1.11. |
Testing genetic mutations |
|
2.1.12. |
Biomarker development in the precision medicine era |
|
2.1.13. |
What are the benefits and limitations of MDx? |
|
2.1.14. |
2018: Turning point for MDx |
|
2.2. |
Genetic Data |
|
2.2.1. |
Applications of genetic data |
|
2.2.2. |
Race to build up genetic database and the dilemma for privacy |
|
2.2.3. |
Global Genetics projects |
|
2.2.4. |
Population sequencing: backing by governments |
|
2.2.5. |
Moral and ethical concerns |
|
2.3. |
Regulations |
|
2.3.1. |
Regulatory routes to market depend on the target market |
|
2.3.2. |
EU regulations for medical devices are changing |
|
2.3.3. |
Changing regulations: Advice to manufacturers |
|
2.3.4. |
A regulatory road map for diagnostic products in the US |
|
2.3.5. |
US regulations for diagnostics: CLIA categorizations |
|
3. |
TECHNOLOGIES OF MOLECULAR DIAGNOSTICS |
|
3.1.1. |
Introduction to Genome |
|
3.1.2. |
Genotyping |
|
3.1.3. |
Gene expression |
|
3.1.4. |
Genotyping and SNP Analysis |
|
3.1.5. |
Working flow of MDx devices |
|
3.1.6. |
Extraction and purification |
|
3.1.7. |
Amplification: PCR or isothermal amplification |
|
3.1.8. |
Detection: DNA sequencing vs. DNA probe |
|
3.1.9. |
Detection methods are being used commercially |
|
3.1.10. |
Optical detection: fluorescence |
|
3.1.11. |
Optical detection: colorimetric |
|
3.1.12. |
Electrochemical detection: with label |
|
3.1.13. |
Electrochemical detection: label free |
|
3.1.14. |
The industry moves toward CMOS chips |
|
3.2. |
Technology: DNA microarrays |
|
3.2.1. |
DNA microarray: high-throughput analysis of target regions in the genome |
|
3.2.2. |
Key players for DNA microarrays |
|
3.2.3. |
Substrate for DNA microarray |
|
3.2.4. |
Synthesis of DNA microarrays |
|
3.2.5. |
Synthesis of DNA microarrays: printed methods |
|
3.2.6. |
Synthesis of DNA microarrays: In-situ synthesis |
|
3.2.7. |
Synthesis of DNA microarrays: microbeads/ self assembled arrays |
|
3.2.8. |
Research trend in DNA microarrays: Microfluidic DNA Microarrays |
|
3.2.9. |
GeneChip® microarrays (Affymetrix, Thermal Fishers) |
|
3.2.10. |
NimbleGen (Roche): Maskless Array Synthesis |
|
3.2.11. |
SurePrint technology (Agilent Technologies) |
|
3.2.12. |
BeadArray Microarray Technology (Illumina) |
|
3.2.13. |
DualChip (Eppendorf) |
|
3.2.14. |
NanoChip electronic microarray (Savyon Diagnostics ) |
|
3.2.15. |
DNA microarrays for DNA sequence (exome sequencing) |
|
3.2.16. |
Limitation of DNA microarray |
|
3.2.17. |
Revenue of DNA microarrays from 2010 to 2018 |
|
3.2.18. |
Market share of DNA microarrays in 2019 |
|
3.2.19. |
Market forecast for microarrays devices from 2020-2030 |
|
3.3. |
Technology: Polymerase chain reaction (PCR) |
|
3.3.1. |
Polymerase chain reaction (PCR): Introduction |
|
3.3.2. |
Polymerase chain reaction (PCR): Process |
|
3.3.3. |
Trend for PCR technology |
|
3.3.4. |
Various PCR technologies |
|
3.3.5. |
Multiplex polymerase chain reaction (mPCR) |
|
3.3.6. |
Real-Time PCR/ Quantitative PCR (qPCR) |
|
3.3.7. |
Labelling for qPCR |
|
3.3.8. |
QuantStudio (Thermal Fisher Scientific): smart PCR |
|
3.3.9. |
Digital PCR (dPCR) |
|
3.3.10. |
Digital PCR devices |
|
3.3.11. |
Droplet Digital PCR (ddPCR, Bio-Rad) |
|
3.3.12. |
Key players for PCR devices |
|
3.3.13. |
Key players for PCR reagents/consumables |
|
3.3.14. |
Isothermal amplification of nucleic acids techniques |
|
3.3.15. |
Which is the future: isothermal amplification or PCR? |
|
3.3.16. |
Revenue of PCR devices from 2010 to 2018 |
|
3.3.17. |
Market share for PCR equipment in 2019 |
|
3.3.18. |
Market forecast for PCR devices from 2020-2030 |
|
3.4. |
Technology: DNA sequencing |
|
3.4.1. |
What's DNA sequencing |
|
3.4.2. |
DNA sequencing |
|
3.4.3. |
Applications of DNA sequencing in research and clinical use |
|
3.4.4. |
DNA sequencing provides insight |
|
3.4.5. |
DNA sequencing technology: first generation |
|
3.4.6. |
Capillary Electrophoresis DNA sequencers |
|
3.4.7. |
Next generation sequencing (NGS) |
|
3.4.8. |
Second generation sequencing workflows (Illumina) |
|
3.4.9. |
Key players for second generation sequencing |
|
3.4.10. |
3rd generation sequencing |
|
3.4.11. |
Key players for third generation sequencing |
|
3.4.12. |
DNA sequencers by Thermo Fisher Scientific |
|
3.4.13. |
DNA sequencers by Oxford nanopore |
|
3.4.14. |
DNA sequencing supply-chain |
|
3.4.15. |
Business model: research, clinical genetic tests, direct-to-consumer |
|
3.4.16. |
Cost for DNA sequencing test |
|
3.4.17. |
Cost to sequence whole human genome |
|
3.4.18. |
Future trends and opportunities |
|
3.4.19. |
Revenue of DNA sequencers from 2010 to 2018 |
|
3.4.20. |
Market share for DNA sequencers in 2019 |
|
3.4.21. |
Market forecast for DNA sequencers from 2020-2030 |
|
3.5. |
Lab-on-a-chip to support molecular diagnostics technologies |
|
3.5.1. |
What is Lab-on-a-chip (LOC)? |
|
3.5.2. |
Ideal LOC devices for POC |
|
3.5.3. |
Lab-on-a-chip applications |
|
3.5.4. |
Example: the simple chip for low-cost, quantitative, and portable nucleic acid testing |
|
3.5.5. |
Lab-on-a-chip for digital polymerase chain reaction (dPCR) |
|
3.5.6. |
Lab-on-a-chip for DNA sequencing |
|
3.5.7. |
Sample preparation |
|
3.5.8. |
Biocompatible photoresists |
|
3.5.9. |
Bio-patterning |
|
3.5.10. |
Photolithography bio-patterning |
|
3.5.11. |
Microstamping bio-patterning |
|
3.5.12. |
Microfluidic patterning |
|
3.5.13. |
Self-assembly bio-patterning |
|
3.5.14. |
Active flow control and digital microfluidics |
|
3.5.15. |
Droplet microfluidics (digital microfluidics) |
|
4. |
MOLECULAR DIAGNOSTICS AT POINT-OF-CARE |
|
4.1. |
Miniaturised devices enable molecular diagnostics at point-of-care |
|
4.2. |
Molecular diagnostics is moving to point-of-care |
|
4.3. |
Varying importance of molecular diagnostics and point-of-care |
|
4.4. |
Market drivers for pushing MDx to the point-of-care |
|
4.5. |
Barriers to success for POC MDx |
|
4.6. |
The impact of POC MDx on the diagnostics market |
|
4.7. |
What it takes to win in point-of-care molecular diagnostics |
|
4.8. |
Examples of POC MDx devices |
|
4.9. |
POC MDx available and in pipeline |
|
4.10. |
Costing of cartridges for POC MDx devices |
|
4.11. |
Examples of disposable cartridge technologies I |
|
4.12. |
Examples of disposable cartridge technologies II |
|
4.13. |
Direction for point-of-care molecular diagnostics |
|
4.14. |
Key trends: multiplexing |
|
4.15. |
Key trends: connectivity and data management |
|
5. |
MARKETS FOR MOLECULAR DIAGNOSTICS |
|
5.1.1. |
Key applications for molecular diagnostics |
|
5.1.2. |
New markets for molecular diagnostics |
|
5.1.3. |
MDx applications are divided into two categories |
|
5.1.4. |
Key players for Human Genetic Tests |
|
5.1.5. |
Numbers of products with FDA approval for Human Genetic Tests for each key players |
|
5.1.6. |
Key players for Microbial Tests |
|
5.1.7. |
Numbers of products with FDA approval for Microbial Tests for each key players |
|
5.2. |
Infectious diseases diagnosis |
|
5.2.1. |
What are infectious diseases |
|
5.2.2. |
Why does it matter |
|
5.2.3. |
Infectious diseases today |
|
5.2.4. |
Infectious diseases will lead to pandemic disease |
|
5.2.5. |
Major infectious threats in 21st Century |
|
5.2.6. |
Main techniques to diagnose infectious diseases |
|
5.2.7. |
Microscopy and culture growth methods |
|
5.2.8. |
Immunoassays |
|
5.2.9. |
Enzyme-linked immunosorbent assay (ELISA) |
|
5.2.10. |
Key players in the lateral flow assay market |
|
5.2.11. |
Molecular diagnostics: Polymerase Chain Reaction (PCR) for infectious disease |
|
5.2.12. |
Point-of-care molecular diagnostic (POC MDx) will take over the infectious disease market from lateral flow assays (LFA) |
|
5.2.13. |
Comparison of MDx and immunoassays for infectious diseases |
|
5.2.14. |
Players in molecular diagnostics for infectious disease detection |
|
5.2.15. |
Devices: Atlas io system |
|
5.2.16. |
Devices: Cobas Liat |
|
5.2.17. |
Devices: Alere i |
|
5.2.18. |
Devices: Alere q Analyzer |
|
5.2.19. |
Devices: Spartan Cube |
|
5.2.20. |
Devices: FilmArray 2.0 |
|
5.2.21. |
Devices: PanNAT system |
|
5.2.22. |
Devices: GeneXpert Omni |
|
5.2.23. |
ページTOPに戻る
IDTechEx社の 診断薬分野 での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
IDTechEx社はどのような調査会社ですか?
IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|