世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

金融サービス産業のビッグデータ 2018-2030年: ビジネスチャンス、課題、戦略、市場予測

Big Data in the Financial Services Industry: 2018 – 2030 – Opportunities, Challenges, Strategies & Forecasts

 

出版社 出版年月電子版価格 ページ数
SNS Telecom & IT
SNSテレコム&IT
2018年7月US$2,500
シングルユーザライセンス
521

サマリー

英国とドバイに拠点をおく調査会社SNSテレコム&IT (SNS Telecom & IT)の調査レポート「金融サービス産業のビッグデータ 2018-2030年: ビジネスチャンス、課題、戦略、市場予測」は、金融サービス産業のビッグデータの主な市場促進要因、市場課題、投資の可能性、用途分野、使用事例、今後のロードマップ、バリューチェーン、ケーススタディ、ベンダの概要と戦略について詳細に調査している。2018年から2030年のビッグデータのハードウェア、ソフトウェア、プロフェッショナルサービス投資の市場規模を、8つの水平市場毎、6つの用途分野毎、11の使用事例毎、6つの地域と35ケ国に区分して予測している。

Synopsis:

“Big Data” originally emerged as a term to describe datasets whose size is beyond the ability of traditional databases to capture, store, manage and analyze. However, the scope of the term has significantly expanded over the years. Big Data not only refers to the data itself but also a set of technologies that capture, store, manage and analyze large and variable collections of data, to solve complex problems.

Amid the proliferation of real-time and historical data from sources such as connected devices, web, social media, sensors, log files and transactional applications, Big Data is rapidly gaining traction from a diverse range of vertical sectors. The financial services industry is no exception to this trend, where Big Data has found a host of applications ranging from targeted marketing and credit scoring to usage-based insurance, data-driven trading, fraud detection and beyond.

SNS Telecom & IT estimates that Big Data investments in the financial services industry will account for nearly $9 Billion in 2018 alone. Led by a plethora of business opportunities for banks, insurers, credit card and payment processing specialists, asset and wealth management firms, lenders and other stakeholders, these investments are further expected to grow at a CAGR of approximately 17% over the next three years.

The “Big Data in the Financial Services Industry: 2018 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of Big Data in the financial services industry including key market drivers, challenges, investment potential, application areas, use cases, future roadmap, value chain, case studies, vendor profiles and strategies. The report also presents market size forecasts for Big Data hardware, software and professional services investments from 2018 through to 2030. The forecasts are segmented for 8 horizontal submarkets, 6 application areas, 11 use cases, 6 regions and 35 countries.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report.

Key Findings:

The report has the following key findings:

•In 2018, Big Data vendors will pocket nearly $9 Billion from hardware, software and professional services revenues in the financial services industry. These investments are further expected to grow at a CAGR of approximately 17% over the next three years, eventually accounting for over $14 Billion by the end of 2021.
•Banks and other traditional financial services institutes are warming to the idea of embracing cloud-based platforms, particularly hybrid-cloud implementations, in a bid to alleviate the technical and scalability challenges associated with on-premise Big Data environments.
•Big Data technologies are playing a pivotal role in facilitating the creation and success of innovative FinTech (Financial Technology) startups, most notably in the online lending, alterative insurance and money transfer sectors.
•In addition to utilizing traditional information sources, financial services institutes are increasingly becoming reliant on alternative sources of data – ranging from social media to satellite imagery – that can provide previously hidden insights for multiple application areas including data-driven trading and investments, and credit scoring.

Topics Covered:

The report covers the following topics:

•Big Data ecosystem
•Market drivers and barriers
•Enabling technologies, standardization and regulatory initiatives
•Big Data analytics and implementation models
•Business case, application areas and use cases in the the financial services industry
•30 case studies of Big Data investments by banks, insurers, credit card and payment processing specialists, asset and wealth management firms, lenders, and other stakeholders in the financial services industry
•Future roadmap and value chain
•Profiles and strategies of over 270 leading and emerging Big Data ecosystem players
•Strategic recommendations for Big Data vendors and financial services industry stakeholders
•Market analysis and forecasts from 2018 till 2030

Forecast Segmentation:

Market forecasts are provided for each of the following submarkets and their categories:

•Hardware, Software & Professional Services

◦Hardware
◦Software
◦Professional Services

•Horizontal Submarkets

◦Storage & Compute Infrastructure
◦Networking Infrastructure
◦Hadoop & Infrastructure Software
◦SQL
◦NoSQL
◦Analytic Platforms & Applications
◦Cloud Platforms
◦Professional Services

•Application Areas

◦Personal & Business Banking
◦Investment Banking & Capital Markets
◦Insurance Services
◦Credit Cards & Payment Processing
◦Lending & Financing
◦Asset & Wealth Management

•Use Cases

◦Personalized & Targeted Marketing
◦Customer Service & Experience
◦Product Innovation & Development
◦Risk Modeling, Management & Reporting
◦Fraud Detection & Prevention
◦Robotic & Intelligent Process Automation
◦Usage & Analytics-Based Insurance
◦Credit Scoring & Control
◦Data-Driven Trading & Investment
◦Third Party Data Monetization
◦Other Use Cases

•Regional Markets

◦Asia Pacific
◦Eastern Europe
◦Latin & Central America
◦Middle East & Africa
◦North America
◦Western Europe

•Country Markets

◦Argentina, Australia, Brazil, Canada, China, Czech Republic, Denmark, Finland, France, Germany,  India, Indonesia, Israel, Italy, Japan, Malaysia, Mexico, Netherlands, Norway, Pakistan, Philippines, Poland, Qatar, Russia, Saudi Arabia, Singapore, South Africa, South Korea, Spain, Sweden, Taiwan, Thailand, UAE, UK,  USA

Key Questions Answered:

The report provides answers to the following key questions:

•How big is the Big Data opportunity in the financial services industry?
•How is the market evolving by segment and region?
•What will the market size be in 2021, and at what rate will it grow?
•What trends, challenges and barriers are influencing its growth?
•Who are the key Big Data software, hardware and services vendors, and what are their strategies?
•How much are banks, insurers, credit card and payment processing specialists, asset and wealth management firms, lenders and other stakeholders investing in Big Data?
•What opportunities exist for Big Data analytics in the financial services industry?
•Which countries, application areas and use cases will see the highest percentage of Big Data investments in the financial services industry?

List of Companies Mentioned:

The following companies and organizations have been reviewed, discussed or mentioned in the report:

1010data
Absolutdata
Acadian Asset Management
Accenture
Actian Corporation
Adaptive Insights
Adobe Systems
Advizor Solutions
AeroSpike
AFS Technologies
Alation
Algorithmia
Alluxio
Alphabet
ALTEN
Alteryx
AMD (Advanced Micro Devices)
American Express
Anaconda
Apixio
AQR Capital Management
Arcadia Data
Arimo
ARM
ASF (Apache Software Foundation)
AtScale
Attivio
Attunity
Automated Insights
Avant
AVORA
AWS (Amazon Web Services)
AXA
Axiomatics
Ayasdi
BackOffice Associates
Basho Technologies
BCG (Boston Consulting Group)
Bedrock Data
BetterWorks
Big Panda
BigML
Birst
Bitam
BlackRock
Bloomberg
Blue Medora
BlueData Software
BlueTalon
BMC Software
BOARD International
Booz Allen Hamilton
Boxever
CACI International
Cambridge Semantics
Capgemini
Capital One
Cazena
CBA/CommBank (Commonwealth Bank of Australia)
Centrifuge Systems
CenturyLink
Chartio
Cigna
Cisco Systems
Civis Analytics
ClearStory Data
Cloudability
Cloudera
Cloudian
Clustrix
CognitiveScale
Collibra
Concurrent Technology
Confluent
Contexti
Couchbase
Crate.io
Cray
Credit Suisse
CSA (Cloud Security Alliance)
CSCC (Cloud Standards Customer Council)
Databricks
Dataiku
Datalytyx
Datameer
DataRobot
DataStax
Datawatch Corporation
Datos IO
DDN (DataDirect Networks)
Decisyon
Dell Technologies
Deloitte
Demandbase
Denodo Technologies
Deutsche Bank
Dianomic Systems
Digital Reasoning Systems
Dimensional Insight
DMG  (Data Mining Group)
Dolphin Enterprise Solutions Corporation
Domino Data Lab
Domo
Dremio
DriveScale
Druva
Dun and Bradstreet
Dundas Data Visualization
DXC Technology
Eagle Alpha
Elastic
Engineering Group (Engineering Ingegneria Informatica)
EnterpriseDB Corporation
eQ Technologic
Equifax
Ericsson
Erwin
EVŌ (Big Cloud Analytics)
EXASOL
EXL (ExlService Holdings)
Facebook
Factset
FICO (Fair Isaac Corporation)
Figure Eight
FogHorn Systems
Fractal Analytics
Franz
Fujitsu
Fuzzy Logix
Gainsight
GE (General Electric)
Glassbeam
GoodData Corporation
Google
Grakn Labs
Greenwave Systems
GridGain Systems
Guavus
GuidePoint
H2O.ai
Hanse Orga Group
HarperDB
HCL Technologies
Hedvig
Hitachi Vantara
Hortonworks
HPE (Hewlett Packard Enterprise)
HSBC Group
Huawei
HVR
HyperScience
HyTrust
IBM Corporation
iDashboards
IDERA
IEC (International Electrotechnical Commission)
IEEE (Institute of Electrical and Electronics Engineers)
Ignite Technologies
Imanis Data
Impetus Technologies
INCITS (InterNational Committee for Information Technology Standards)
Incorta
InetSoft Technology Corporation
InfluxData
Infogix
Infor
Informatica
Information Builders
Infosys
Infoworks
Insightsoftware.com
InsightSquared
Intel Corporation
Interana
InterSystems Corporation
ISO (International Organization for Standardization)
ITU (International Telecommunication Union)
Jedox
Jethro
Jinfonet Software
JNB (Japan Net Bank)
JPMorgan Chase & Co.
Juniper Networks
Kabbage
KALEAO
Keen IO
Keyrus
Kinetica
KNIME
Kognitio
Kyvos Insights
LeanXcale
LenddoEFL
Lexalytics
Lexmark International
Lightbend
Linux Foundation
Logi Analytics
Logical Clocks
Longview Solutions
Looker Data Sciences
LucidWorks
Luminoso Technologies
Maana
Man Group
Manthan Software Services
MapD Technologies
MapR Technologies
MariaDB Corporation
MarkLogic Corporation
Mastercard
Mathworks
Melissa
MemSQL
Metric Insights
Microsoft Corporation
MicroStrategy
Minitab
MongoDB
Mu Sigma
NEC Corporation
Neo4j
NetApp
Nimbix
Nokia
NTT Data Corporation
Numerify
NuoDB
NVIDIA Corporation
OASIS (Organization for the Advancement of Structured Information Standards)
Objectivity
Oblong Industries
ODaF (Open Data Foundation)
ODCA (Open Data Center Alliance)
OGC (Open Geospatial Consortium)
OpenText Corporation
Opera Solutions
Optimal Plus
Oracle Corporation
OTP Bank
Palantir Technologies
Panasonic Corporation
Panorama Software
Paxata
Pepperdata
Phocas Software
Pivotal Software
Prognoz
Progress Software Corporation
Progressive Corporation
Provalis Research
Pure Storage
PwC (PricewaterhouseCoopers International)
Pyramid Analytics
Qlik
qplum
Qrama/Tengu
Quandl
Quantum Corporation
Qubole
Rackspace
Radius Intelligence
RapidMiner
RavenPack
Recorded Future
Red Hat
Redis Labs
RedPoint Global
Reltio
RStudio
Rubrik
Ryft
S&P's (Standard & Poor's)
Sailthru
Salesforce.com
Salient Management Company
Samsung Fire & Marine Insurance
Samsung Group
SAP
SAS Institute
ScaleOut Software
Seagate Technology
Shinhan Card
Sinequa
SiSense
Sizmek
SnapLogic
Snowflake Computing
Software AG
Splice Machine
Splunk
Strategy Companion Corporation
Stratio
Streamlio
StreamSets
Striim
Sumo Logic
Supermicro (Super Micro Computer)
Syncsort
SynerScope
SYNTASA
Tableau Software
Talend
Tamr
TARGIT
TCS (Tata Consultancy Services)
Teradata Corporation
Thales
Thomson Reuters
ThoughtSpot
TIBCO Software
Tidemark
TM Forum
Toshiba Corporation
TPC (Transaction Processing Performance Council)
TransferWise
Transwarp
Trifacta
Two Sigma Investments
U.S. NIST (National Institute of Standards and Technology)
Unifi Software
UnitedHealth Group
Unravel Data
Upstart
VANTIQ
Vecima Networks
Visa
VMware
VoltDB
W3C (World Wide Web Consortium)
WANdisco
Waterline Data
Western Digital Corporation
Western Union
WhereScape
WiPro
Wolfram Research
Workday
Xplenty
Yellowfin BI
Yseop
Zendesk
Zoomdata
Zucchetti
Zurich Insurance Group



目次


1 Chapter 1: Introduction ........................................... 22
1.1 Executive Summary ...................................................................... 22
1.2 Topics Covered ........................................................................ 24
1.3 Forecast Segmentation ..................................................................... 25
1.4 Key Questions Answered ................................................................... 28
1.5 Key Findings ............................................................................. 29
1.6 Methodology ........................................................................... 30
1.7 Target Audience ...................................................................... 31
1.8 Companies & Organizations Mentioned ..................................................... 32
2 Chapter 2: An Overview of Big Data ................................... 35
2.1 What is Big Data? ......................................................................... 35
2.2 Key Approaches to Big Data Processing ...................................................... 35
2.2.1 Hadoop ................................................................................... 36
2.2.2 NoSQL ................................................................................ 38
2.2.3 MPAD (Massively Parallel Analytic Databases) ..................................................... 38
2.2.4 In-Memory Processing ...................................................................... 39
2.2.5 Stream Processing Technologies ............................................................ 39
2.2.6 Spark .................................................................................. 40
2.2.7 Other Databases & Analytic Technologies ....................................................... 40
2.3 Key Characteristics of Big Data ............................................................... 41
2.3.1 Volume .................................................................................... 41
2.3.2 Velocity ................................................................................... 41
2.3.3 Variety................................................................................ 41
2.3.4 Value .................................................................................. 42
2.4 Market Growth Drivers ..................................................................... 42
2.4.1 Awareness of Benefits ...................................................................... 42
2.4.2 Maturation of Big Data Platforms ............................................................... 42
2.4.3 Continued Investments by Web Giants, Governments & Enterprises ................................. 43
2.4.4 Growth of Data Volume, Velocity & Variety .................................................... 43
2.4.5 Vendor Commitments & Partnerships ........................................................ 43
2.4.6 Technology Trends Lowering Entry Barriers .................................................... 44
2.5 Market Barriers ....................................................................... 44
2.5.1 Lack of Analytic Specialists ..................................................................... 44
2.5.2 Uncertain Big Data Strategies ................................................................ 44
2.5.3 Organizational Resistance to Big Data Adoption .................................................. 45
2.5.4 Technical Challenges: Scalability & Maintenance ................................................. 45
2.5.5 Security & Privacy Concerns .................................................................. 45
3 Chapter 3: Big Data Analytics ........................................ 46
3.1 What are Big Data Analytics? .............................................................. 46
3.2 The Importance of Analytics ............................................................... 46
3.3 Reactive vs. Proactive Analytics .......................................................... 47
3.4 Customer vs. Operational Analytics ......................................................... 47
3.5 Technology & Implementation Approaches ................................................. 48
3.5.1 Grid Computing ............................................................................ 48
3.5.2 In-Database Processing ..................................................................... 48
3.5.3 In-Memory Analytics ......................................................................... 49
3.5.4 Machine Learning & Data Mining ............................................................... 49
3.5.5 Predictive Analytics ...................................................................... 50
3.5.6 NLP (Natural Language Processing) ............................................................ 50
3.5.7 Text Analytics ............................................................................... 51
3.5.8 Visual Analytics ............................................................................ 51
3.5.9 Graph Analytics ............................................................................ 52
3.5.10 Social Media, IT & Telco Network Analytics ..................................................... 52
4 Chapter 4: Business Case & Applications in the Financial Services Industry ...... 54
4.1 Overview & Investment Potential ....................................................... 54
4.2 Industry Specific Market Growth Drivers ...................................................... 55
4.3 Industry Specific Market Barriers ........................................................ 56
4.4 Key Application Areas .................................................................... 58
4.4.1 Personal & Business Banking ................................................................. 58
4.4.2 Investment Banking & Capital Markets ........................................................... 59
4.4.3 Insurance Services ....................................................................... 59
4.4.4 Credit Cards & Payments Processing .......................................................... 60
4.4.5 Lending & Financing .......................................................................... 60
4.4.6 Asset & Wealth Management ................................................................ 61
4.5 Use Cases ............................................................................. 62
4.5.1 Personalized & Targeted Marketing ........................................................... 62
4.5.2 Customer Service & Experience ............................................................. 63
4.5.3 Product Innovation & Development ........................................................... 64
4.5.4 Risk Modeling, Management & Reporting ....................................................... 64
4.5.5 Fraud Detection & Prevention ............................................................... 65
4.5.6 Robotic & Intelligent Process Automation ....................................................... 66
4.5.7 Usage & Analytics-Based Insurance ............................................................ 67
4.5.8 Credit Scoring & Control ................................................................... 67
4.5.9 Data-Driven Trading & Investment ............................................................. 68
4.5.10 Third Party Data Monetization .............................................................. 68
4.5.11 Other Use Cases ........................................................................... 69
5 Chapter 5: Financial Services Industry Case Studies ...................... 70
5.1 Banks ............................................................................... 70
5.1.1 CBA/CommBank (Commonwealth Bank of Australia): Driving Customer Engagement with Big Data.......... 70
5.1.2 Credit Suisse: Enhancing Regulatory Compliance with Big Data ..................................... 72
5.1.3 Deutsche Bank: Quantifying the Importance of Intangible Assets with Big Data .......................... 74
5.1.4 HSBC Group: Combating Money Laundering & Financial Crime with Big Data ......................... 77
5.1.5 JPMorgan Chase & Co.: Enabling Responsible Prospecting with Big Data ................................ 79
5.1.6 OTP Bank: Reducing Loan Defaults with Big Data ................................................. 81
5.2 Insurers ........................................................................... 83
5.2.1 AXA: Simplifying Customer Interaction with Big Data................................................ 83
5.2.2 Cigna: Streamlining Health Insurance Claims with Big Data ........................................... 87
5.2.3 Progressive Corporation: Rewarding Safe Drivers & Improving Traffic Safety with Big Data .................. 89
5.2.4 Samsung Fire & Marine Insurance: Transforming Insurance Underwriting with Big Data .................. 92
5.2.5 UnitedHealth Group: Enhancing Patient Care & Value with Big Data .................................. 94
5.2.6 Zurich Insurance Group: Improving Risk Management with Big Data ................................. 96
5.3 Credit Card & Payment Processing Specialists .............................................. 98
5.3.1 American Express: Enabling Real-Time Targeting Marketing with Big Data ............................. 98
5.3.2 Capital One: Enriching Cybersecurity with Big Data ................................................ 100
5.3.3 Mastercard: Predictively Combating Account Related Fraud with Big Data ........................... 103
5.3.4 TransferWise: Simplifying International Money Transfers With Big Data............................... 105
5.3.5 Visa: Saving Billions of Dollars with Big Data ...................................................... 107
5.3.6 Western Union: Personalizing Customer Experience with Big Data .................................. 109
5.4 Asset & Wealth Management Firms ...................................................... 111
5.4.1 Acadian Asset Management: Exploiting Market Inefficiencies with Big Data ......................... 111
5.4.2 AQR Capital Management: Finding Profitable Trading Patterns with Big Data ........................... 113
5.4.3 BlackRock: Gleaning Economic Clues with Big Data ................................................. 115
5.4.4 Man Group: Accelerating Trades & Investment Modeling with Big Data ............................... 118
5.4.5 qplum: Optimizing Client Portfolios with Big Data.............................................. 120
5.4.6 Two Sigma Investments: Making Systematic Trades with Big Data ................................... 122
5.5 Lenders & Other Stakeholders .......................................................... 124
5.5.1 Avant: Streamlining Borrowing with Big Data ..................................................... 124
5.5.2 Equifax: Helping Make Informed Credit Decisions with Big Data ...................................... 126
5.5.3 FICO (Fair Isaac Corporation): Expanding Access to Credit with Big Data ............................... 128
5.5.4 Kabbage: Empowering Small Business Lending with Big Data ...................................... 131
5.5.5 LenddoEFL: Increasing Access to Financial Services in Emerging Economies with Big Data .................. 133
5.5.6 Upstart: Facilitating Smarter Loans with Big Data .............................................. 135
6 Chapter 6: Future Roadmap & Value Chain ........................... 137
6.1 Future Roadmap...................................................................... 137
6.1.1 Pre-2020: Investments in Advanced Analytics & AI (Artificial Intelligence) ............................ 137
6.1.2 2020 – 2025: Large-Scale Adoption of Cloud-Based Big Data Platforms................................. 138
6.1.3 2025 – 2030: Towards the Digitization of Financial Services ........................................ 139
6.2 The Big Data Value Chain ............................................................. 140
6.2.1 Hardware Providers ........................................................................ 140
6.2.1.1 Storage & Compute Infrastructure Providers ................................................ 140
6.2.1.2 Networking Infrastructure Providers ........................................................ 141
6.2.2 Software Providers ......................................................................... 141
6.2.2.1 Hadoop & Infrastructure Software Providers ................................................ 142
6.2.2.2 SQL & NoSQL Providers ................................................................... 142
6.2.2.3 Analytic Platform & Application Software Providers .......................................... 142
6.2.2.4 Cloud Platform Providers ................................................................ 142
6.2.3 Professional Services Providers ................................................................ 143
6.2.4 End-to-End Solution Providers ............................................................. 143
6.2.5 Financial Services Industry ................................................................... 143
7 Chapter 7: Standardization & Regulatory Initiatives ........................ 144
7.1 ASF (Apache Software Foundation) ....................................................... 144
7.1.1 Management of Hadoop ................................................................. 144
7.1.2 Big Data Projects Beyond Hadoop ............................................................ 144
7.2 CSA (Cloud Security Alliance) ............................................................ 148
7.2.1 BDWG (Big Data Working Group) ............................................................. 148
7.3 CSCC (Cloud Standards Customer Council) ................................................. 149
7.3.1 Big Data Working Group ................................................................. 149
7.4 DMG (Data Mining Group) ............................................................... 150
7.4.1 PMML (Predictive Model Markup Language) Working Group ...................................... 150
7.4.2 PFA (Portable Format for Analytics) Working Group ............................................... 150
7.5 IEEE (Institute of Electrical and Electronics Engineers) ......................................... 150
7.5.1 Big Data Initiative ....................................................................... 151
7.6 INCITS (InterNational Committee for Information Technology Standards) ......................... 152
7.6.1 Big Data Technical Committee ............................................................. 152
7.7 ISO (International Organization for Standardization) ........................................... 153
7.7.1 ISO/IEC JTC 1/SC 32: Data Management and Interchange ............................................ 153
7.7.2 ISO/IEC JTC 1/SC 38: Cloud Computing and Distributed Platforms .................................... 154
7.7.3 ISO/IEC JTC 1/SC 27: IT Security Techniques .................................................. 154
7.7.4 ISO/IEC JTC 1/WG 9: Big Data .............................................................. 154
7.7.5 Collaborations with Other ISO Work Groups ...................................................... 155
7.8 ITU (International Telecommunication Union) ................................................ 156
7.8.1 ITU-T Y.3600: Big Data – Cloud Computing Based Requirements and Capabilities...................... 156
7.8.2 Other Deliverables Through SG (Study Group) 13 on Future Networks ................................. 157
7.8.3 Other Relevant Work ...................................................................... 157
7.9 Linux Foundation ..................................................................... 158
7.9.1 ODPi (Open Ecosystem of Big Data) .......................................................... 158
7.10 NIST (National Institute of Standards and Technology) ........................................ 158
7.10.1 NBD-PWG (NIST Big Data Public Working Group) ............................................... 158
7.11 OASIS (Organization for the Advancement of Structured Information Standards) .................. 159
7.11.1 Technical Committees..................................................................... 159
7.12 ODaF (Open Data Foundation) .......................................................... 160
7.12.1 Big Data Accessibility ...................................................................... 160
7.13 ODCA (Open Data Center Alliance) ........................................................ 160
7.13.1 Work on Big Data ....................................................................... 161
7.14 OGC (Open Geospatial Consortium) ...................................................... 161
7.14.1 Big Data DWG (Domain Working Group) ....................................................... 161
7.15 TM Forum ........................................................................... 161
7.15.1 Big Data Analytics Strategic Program ........................................................ 162
7.16 TPC (Transaction Processing Performance Council) ......................................... 162
7.16.1 TPC-BDWG (TPC Big Data Working Group) .................................................... 162
7.17 W3C (World Wide Web Consortium) ..................................................... 162
7.17.1 Big Data Community Group ................................................................. 163
7.17.2 Open Government Community Group........................................................... 163
8 Chapter 8: Market Sizing & Forecasts ............................... 164
8.1 Global Outlook for the Big Data in the Financial Services Industry ............................... 164
8.2 Hardware, Software & Professional Services Segmentation .................................... 165
8.3 Horizontal Submarket Segmentation ........................................................ 166
8.4 Hardware Submarkets ..................................................................... 167
8.4.1 Storage and Compute Infrastructure ........................................................ 167
8.4.2 Networking Infrastructure ................................................................... 167
8.5 Software Submarkets ................................................................. 168
8.5.1 Hadoop & Infrastructure Software ........................................................... 168
8.5.2 SQL ................................................................................... 168
8.5.3 NoSQL ................................................................................... 169
8.5.4 Analytic Platforms & Applications............................................................. 169
8.5.5 Cloud Platforms ......................................................................... 170
8.6 Professional Services Submarket.......................................................... 170
8.6.1 Professional Services ...................................................................... 170
8.7 Application Area Segmentation ........................................................... 171
8.7.1 Personal & Business Banking ............................................................... 172
8.7.2 Investment Banking & Capital Markets ......................................................... 172
8.7.3 Insurance Services .......................................................................... 173
8.7.4 Credit Cards & Payment Processing .......................................................... 173
8.7.5 Lending & Financing ........................................................................ 174
8.7.6 Asset & Wealth Management .............................................................. 174
8.8 Use Case Segmentation ................................................................... 175
8.8.1 Personalized & Targeted Marketing ......................................................... 176
8.8.2 Customer Service & Experience ................................................................ 176
8.8.3 Product Innovation & Development ......................................................... 177
8.8.4 Risk Modeling, Management & Reporting ..................................................... 177
8.8.5 Fraud Detection & Prevention ............................................................. 178
8.8.6 Robotic & Intelligent Process Automation ..................................................... 178
8.8.7 Usage & Analytics-Based Insurance .......................................................... 179
8.8.8 Credit Scoring & Control ................................................................. 179
8.8.9 Data-Driven Trading & Investment ........................................................... 180
8.8.10 Third Party Data Monetization ............................................................ 180
8.8.11 Other Use Cases ......................................................................... 181
8.9 Regional Outlook ........................................................................ 182
8.10 Asia Pacific .......................................................................... 183
8.10.1 Country Level Segmentation ................................................................ 183
8.10.2 Australia ................................................................................ 184
8.10.3 China ................................................................................ 184
8.10.4 India ................................................................................. 185
8.10.5 Indonesia .............................................................................. 185
8.10.6 Japan ................................................................................ 186
8.10.7 Malaysia ................................................................................ 186
8.10.8 Pakistan................................................................................. 187
8.10.9 Philippines............................................................................. 187
8.10.10 Singapore .............................................................................. 188
8.10.11 South Korea ............................................................................... 188
8.10.12 Taiwan .................................................................................. 189
8.10.13 Thailand ................................................................................ 189
8.10.14 Rest of Asia Pacific .......................................................................... 190
8.11 Eastern Europe ........................................................................ 191
8.11.1 Country Level Segmentation ................................................................ 191
8.11.2 Czech Republic ........................................................................... 192
8.11.3 Poland ................................................................................... 192
8.11.4 Russia .................................................................................... 193
8.11.5 Rest of Eastern Europe ................................................................... 193
8.12 Latin & Central America ............................................................... 194
8.12.1 Country Level Segmentation ................................................................ 194
8.12.2 Argentina .............................................................................. 195
8.12.3 Brazil ................................................................................ 195
8.12.4 Mexico .................................................................................. 196
8.12.5 Rest of Latin & Central America ................................................................ 196
8.13 Middle East & Africa ..................................................................... 197
8.13.1 Country Level Segmentation ................................................................ 197
8.13.2 Israel ................................................................................ 198
8.13.3 Qatar ................................................................................ 198
8.13.4 Saudi Arabia ............................................................................... 199
8.13.5 South Africa ............................................................................... 199
8.13.6 UAE .................................................................................. 200
8.13.7 Rest of the Middle East & Africa ............................................................... 200
8.14 North America ......................................................................... 201
8.14.1 Country Level Segmentation ................................................................ 201
8.14.2 Canada .................................................................................. 202
8.14.3 USA .................................................................................. 202
8.15 Western Europe ...................................................................... 203
8.15.1 Country Level Segmentation ................................................................ 203
8.15.2 Denmark ............................................................................... 204
8.15.3 Finland .................................................................................. 204
8.15.4 France ................................................................................... 205
8.15.5 Germany ............................................................................... 205
8.15.6 Italy .................................................................................. 206
8.15.7 Netherlands ............................................................................... 206
8.15.8 Norway ................................................................................. 207
8.15.9 Spain ................................................................................ 207
8.15.10 Sweden ................................................................................. 208
8.15.11 UK .................................................................................... 208
8.15.12 Rest of Western Europe .................................................................. 209
9 Chapter 9: Vendor Landscape ..................................... 210
9.1 1010data ............................................................................... 210
9.2 Absolutdata ........................................................................... 211
9.3 Accenture .............................................................................. 212
9.4 Actian Corporation/HCL Technologies ...................................................... 213
9.5 Adaptive Insights ........................................................................ 215
9.6 Adobe Systems ...................................................................... 216
9.7 Advizor Solutions ........................................................................ 218
9.8 AeroSpike .............................................................................. 219
9.9 AFS Technologies ........................................................................ 220
9.10 Alation ........................................................................... 221
9.11 Algorithmia ......................................................................... 222
9.12 Alluxio ............................................................................ 223
9.13 ALTEN ............................................................................ 224
9.14 Alteryx ........................................................................... 225
9.15 AMD (Advanced Micro Devices) ........................................................ 226
9.16 Anaconda ........................................................................... 227
9.17 Apixio ............................................................................ 228
9.18 Arcadia Data ....................................................................... 229
9.19 ARM ............................................................................... 230
9.20 AtScale ........................................................................... 231
9.21 Attivio ............................................................................ 232
9.22 Attunity .............................................................................. 233
9.23 Automated Insights ................................................................. 234
9.24 AVORA ........................................................................... 235
9.25 AWS (Amazon Web Services) ............................................................ 236
9.26 Axiomatics .......................................................................... 238
9.27 Ayasdi ............................................................................ 239
9.28 BackOffice Associates ................................................................... 240
9.29 Basho Technologies ................................................................. 241
9.30 BCG (Boston Consulting Group) ........................................................ 242
9.31 Bedrock Data ...................................................................... 243
9.32 BetterWorks ....................................................................... 244
9.33 Big Panda ............................................................................ 245
9.34 BigML ............................................................................ 246
9.35 Bitam ............................................................................. 247
9.36 Blue Medora ....................................................................... 248
9.37 BlueData Software .................................................................. 249
9.38 BlueTalon ........................................................................... 250
9.39 BMC Software ......................................................................... 251
9.40 BOARD International .................................................................... 252
9.41 Booz Allen Hamilton ..................................................................... 253
9.42 Boxever .............................................................................. 254
9.43 CACI International ................................................................... 255
9.44 Cambridge Semantics ................................................................... 256
9.45 Capgemini .......................................................................... 257
9.46 Cazena ........................................................................... 258
9.47 Centrifuge Systems ................................................................. 259
9.48 CenturyLink ........................................................................ 260
9.49 Chartio ........................................................................... 261
9.50 Cisco Systems .......................................................................... 262
9.51 Civis Analytics .......................................................................... 263
9.52 ClearStory Data ....................................................................... 264
9.53 Cloudability ........................................................................ 265
9.54 Cloudera ............................................................................. 266
9.55 Cloudian ............................................................................. 267
9.56 Clustrix ............................................................................... 268
9.57 CognitiveScale ......................................................................... 269
9.58 Collibra ............................................................................... 270
9.59 Concurrent Technology/Vecima Networks ................................................. 271
9.60 Confluent ............................................................................ 272
9.61 Contexti .............................................................................. 273
9.62 Couchbase .......................................................................... 274
9.63 Crate.io ............................................................................... 275
9.64 Cray ............................................................................... 276
9.65 Databricks .......................................................................... 277
9.66 Dataiku ............................................................................... 278
9.67 Datalytyx ............................................................................ 279
9.68 Datameer ........................................................................... 280
9.69 DataRobot .......................................................................... 281
9.70 DataStax ............................................................................. 282
9.71 Datawatch Corporation ................................................................ 283
9.72 DDN (DataDirect Networks) .............................................................. 284
9.73 Decisyon ............................................................................. 285
9.74 Dell Technologies .................................................................... 286
9.75 Deloitte............................................................................... 287
9.76 Demandbase ...................................................................... 288
9.77 Denodo Technologies ................................................................... 289
9.78 Dianomic Systems ................................................................... 290
9.79 Digital Reasoning Systems ............................................................ 291
9.80 Dimensional Insight ................................................................. 292
9.81 Dolphin Enterprise Solutions Corporation/Hanse Orga Group .................................. 293
9.82 Domino Data Lab ..................................................................... 294
9.83 Domo ............................................................................. 295
9.84 Dremio........................................................................... 296
9.85 DriveScale ........................................................................... 297
9.86 Druva ............................................................................. 298
9.87 Dundas Data Visualization ............................................................ 299
9.88 DXC Technology ...................................................................... 300
9.89 Elastic ............................................................................ 301
9.90 Engineering Group (Engineering Ingegneria Informatica) .................................... 302
9.91 EnterpriseDB Corporation ............................................................ 303
9.92 eQ Technologic ........................................................................ 304
9.93 Ericsson .............................................................................. 305
9.94 Erwin ............................................................................. 306
9.95 EVŌ (Big Cloud Analytics) ............................................................. 307
9.96 EXASOL ............................................................................... 308
9.97 EXL (ExlService Holdings).............................................................. 309
9.98 Facebook ............................................................................ 310
9.99 FICO (Fair Isaac Corporation) ............................................................ 311
9.100 Figure Eight ......................................................................... 312
9.101 FogHorn Systems ..................................................................... 313
9.102 Fractal Analytics .................................................................. 314
9.103 Franz .............................................................................. 315
9.104 Fujitsu ............................................................................ 316
9.105 Fuzzy Logix .......................................................................... 318
9.106 Gainsight ........................................................................ 319
9.107 GE (General Electric) ................................................................ 320
9.108 Glassbeam ...................................................................... 321
9.109 GoodData Corporation ............................................................ 322
9.110 Google/Alphabet................................................................. 323
9.111 Grakn Labs .......................................................................... 325
9.112 Greenwave Systems ................................................................. 326
9.113 GridGain Systems ..................................................................... 327
9.114 H2O.ai ............................................................................ 328
9.115 HarperDB ....................................................................... 329
9.116 Hedvig ............................................................................ 330
9.117 Hitachi Vantara ................................................................... 331
9.118 Hortonworks ....................................................................... 332
9.119 HPE (Hewlett Packard Enterprise) ..................................................... 333
9.120 Huawei ........................................................................... 335
9.121 HVR ........................................................................... 336
9.122 HyperScience ...................................................................... 337
9.123 HyTrust ........................................................................... 338
9.124 IBM Corporation ................................................................. 340
9.125 iDashboards ........................................................................ 342
9.126 IDERA ............................................................................. 343
9.127 Ignite Technologies .................................................................. 344
9.128 Imanis Data ......................................................................... 346
9.129 Impetus Technologies .............................................................. 347
9.130 Incorta ............................................................................ 348
9.131 InetSoft Technology Corporation....................................................... 349
9.132 InfluxData ....................................................................... 350
9.133 Infogix ............................................................................ 351
9.134 Infor/Birst....................................................................... 352
9.135 Informatica ......................................................................... 354
9.136 Information Builders ................................................................ 355
9.137 Infosys ............................................................................ 356
9.138 Infoworks ....................................................................... 357
9.139 Insightsoftware.com ................................................................ 358
9.140 InsightSquared .................................................................... 359
9.141 Intel Corporation ..................................................................... 360
9.142 Interana ......................................................................... 361
9.143 InterSystems Corporation ............................................................. 362
9.144 Jedox .............................................................................. 363
9.145 Jethro ............................................................................. 364
9.146 Jinfonet Software ..................................................................... 365
9.147 Juniper Networks ..................................................................... 366
9.148 KALEAO .......................................................................... 367
9.149 Keen IO........................................................................... 368
9.150 Keyrus ............................................................................ 369
9.151 Kinetica .......................................................................... 370
9.152 KNIME ............................................................................ 371
9.153 Kognitio .......................................................................... 372
9.154 Kyvos Insights ...................................................................... 373
9.155 LeanXcale ....................................................................... 374
9.156 Lexalytics ........................................................................ 375
9.157 Lexmark International .............................................................. 377
9.158 Lightbend ....................................................................... 378
9.159 Logi Analytics ...................................................................... 379
9.160 Logical Clocks ...................................................................... 380
9.161 Longview Solutions/Tidemark ........................................................... 381
9.162 Looker Data Sciences ............................................................... 383
9.163 LucidWorks ......................................................................... 384
9.164 Luminoso Technologies ................................................................ 385
9.165 Maana ............................................................................ 386
9.166 Manthan Software Services .......................................................... 387
9.167 MapD Technologies ................................................................. 388
9.168 MapR Technologies .................................................................. 389
9.169 MariaDB Corporation ............................................................... 390
9.170 MarkLogic Corporation ............................................................ 391
9.171 Mathworks .......................................................................... 392
9.172 Melissa ........................................................................... 393
9.173 MemSQL ........................................................................ 394
9.174 Metric Insights .................................................................... 395
9.175 Microsoft Corporation ............................................................. 396
9.176 MicroStrategy ..................................................................... 398
9.177 Minitab........................................................................... 399
9.178 MongoDB ....................................................................... 400
9.179 Mu Sigma ....................................................................... 401
9.180 NEC Corporation ................................................................. 402
9.181 Neo4j .............................................................................. 403
9.182 NetApp ........................................................................... 404
9.183 Nimbix ............................................................................ 405
9.184 Nokia .............................................................................. 406
9.185 NTT Data Corporation .............................................................. 407
9.186 Numerify ........................................................................ 408
9.187 NuoDB ............................................................................ 409
9.188 NVIDIA Corporation ................................................................. 410
9.189 Objectivity ...................................................................... 411
9.190 Oblong Industries ..................................................................... 412
9.191 OpenText Corporation ............................................................. 413
9.192 Opera Solutions .................................................................. 415
9.193 Optimal Plus ........................................................................ 416
9.194 Oracle Corporation .................................................................. 417
9.195 Palantir Technologies ............................................................... 420
9.196 Panasonic Corporation/Arimo ........................................................... 422
9.197 Panorama Software ................................................................. 423
9.198 Paxata ............................................................................ 424
9.199 Pepperdata ......................................................................... 425
9.200 Phocas Software ................................................................. 426
9.201 Pivotal Software .................................................................. 427
9.202 Prognoz .......................................................................... 429
9.203 Progress Software Corporation ......................................................... 430
9.204 Provalis Research ..................................................................... 431
9.205 Pure Storage ....................................................................... 432
9.206 PwC (PricewaterhouseCoopers International) ............................................ 433
9.207 Pyramid Analytics .................................................................... 434
9.208 Qlik ............................................................................ 435
9.209 Qrama/Tengu ...................................................................... 436
9.210 Quantum Corporation ............................................................. 437
9.211 Qubole ........................................................................... 438
9.212 Rackspace ...................................................................... 439
9.213 Radius Intelligence ................................................................... 440
9.214 RapidMiner ......................................................................... 441
9.215 Recorded Future ................................................................. 442
9.216 Red Hat .......................................................................... 443
9.217 Redis Labs ...................................................................... 444
9.218 RedPoint Global .................................................................. 445
9.219 Reltio .............................................................................. 446
9.220 RStudio ........................................................................... 447
9.221 Rubrik/Datos IO .................................................................. 448
9.222 Ryft ............................................................................ 449
9.223 Sailthru ........................................................................... 450
9.224 Salesforce.com .................................................................... 451
9.225 Salient Management Company ......................................................... 452
9.226 Samsung Group ................................................................... 453
9.227 SAP ............................................................................ 454
9.228 SAS Institute ........................................................................ 455
9.229 ScaleOut Software ................................................................... 456
9.230 Seagate Technology ................................................................. 457
9.231 Sinequa .......................................................................... 458
9.232 SiSense ........................................................................... 459
9.233 Sizmek ............................................................................ 460
9.234 SnapLogic ....................................................................... 461
9.235 Snowflake Computing .............................................................. 462
9.236 Software AG ........................................................................ 463
9.237 Splice Machine .................................................................... 464
9.238 Splunk ............................................................................ 465
9.239 Strategy Companion Corporation ...................................................... 467
9.240 Stratio ............................................................................ 468
9.241 Streamlio ........................................................................ 469
9.242 StreamSets .......................................................................... 470
9.243 Striim .............................................................................. 471
9.244 Sumo Logic .......................................................................... 472
9.245 Supermicro (Super Micro Computer) ..................................................... 473
9.246 Syncsort ......................................................................... 474
9.247 SynerScope ......................................................................... 476
9.248 SYNTASA ........................................................................ 477
9.249 Tableau Software ..................................................................... 478
9.250 Talend ............................................................................ 479
9.251 Tamr ............................................................................... 480
9.252 TARGIT ........................................................................... 481
9.253 TCS (Tata Consultancy Services) ........................................................ 482
9.254 Teradata Corporation .............................................................. 483
9.255 Thales/Guavus .................................................................... 485
9.256 ThoughtSpot ....................................................................... 486
9.257 TIBCO Software ................................................................... 487
9.258 Toshiba Corporation ................................................................ 489
9.259 Transwarp ...................................................................... 490
9.260 Trifacta ........................................................................... 491
9.261 Unifi Software ..................................................................... 492
9.262 Unravel Data ....................................................................... 493
9.263 VANTIQ .......................................................................... 494
9.264 VMware ......................................................................... 495
9.265 VoltDB ............................................................................ 496
9.266 WANdisco ...................................................................... 497
9.267 Waterline Data .................................................................... 498
9.268 Western Digital Corporation ......................................................... 499
9.269 WhereScape ........................................................................ 500
9.270 WiPro ............................................................................. 501
9.271 Wolfram Research ................................................................... 502
9.272 Workday ......................................................................... 504
9.273 Xplenty ........................................................................... 506
9.274 Yellowfin BI ......................................................................... 507
9.275 Yseop.............................................................................. 508
9.276 Zendesk .......................................................................... 509
9.277 Zoomdata ....................................................................... 510
9.278 Zucchetti ........................................................................ 511
10 Chapter 10: Conclusion & Strategic Recommendations ................... 512
10.1 Why is the Market Poised to Grow? ...................................................... 512
10.2 Geographic Outlook: Which Countries Offer the Highest Growth Potential? ..................... 513
10.3 Big Data is for Everyone ............................................................... 513
10.4 Addressing Customer Expectations with Data-Driven Financial Services ............................ 514
10.5 The Importance of AI (Artificial Intelligence) & Machine Learning ................................. 514
10.6 Impact of Blockchain on Big Data Processing ............................................. 515
10.7 Growing Use of Alternative Data Sources ................................................... 515
10.8 Adoption of Cloud Platforms to Address On-Premise System Limitations .......................... 516
10.9 Data Security & Privacy Concerns .......................................................... 517
10.10 Emergence of Data-Driven Cybersecurity for Financial Services ................................ 518
10.11 Recommendations ................................................................... 519
10.11.1 Big Data Hardware, Software & Professional Services Providers....................................... 519
10.11.2 Financial Services Industry Stakeholders ....................................................... 520


List of Figures

Figure 1: Hadoop Architecture ........................................................................................................... 36
Figure 2: Reactive vs. Proactive Analytics ................................................................................................ 47
Figure 3: Distribution of Big Data Investments in the Financial Services Industry, by Application Area: 2018 (%) .......................................... 54
Figure 4: Progressive Corporation's Use of Big Data for Auto Insurance .......................................................................... 90
Figure 5: Capital One's Purple Rain Framework .............................................................................................. 101
Figure 6: TransferWise's Money Transfer Platform ......................................................................................... 105
Figure 7: qplum's HFT (High Frequency Trading) Architecture .................................................................................. 121
Figure 8: Use of Alternative Data Sources in FICO Score XD 2 ................................................................................... 129
Figure 9: Kabbage's Data-Driven Decision Engine ........................................................................................... 131
Figure 10: Digital & Alternative Data Sources for LenddoEFL's Credit Scoring Platform ................................................................ 134
Figure 11: Comparison of Data Sources Between Upstart & Traditional Lenders ..................................................................... 135
Figure 12: Big Data Roadmap in the Financial Services Industry: 2018 – 2030 .................................................................... 137
Figure 13: Big Data Value Chain in the Financial Services Industry ............................................................................ 140
Figure 14: Key Aspects of Big Data Standardization ........................................................................................ 151
Figure 15: Global Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ........................................................ 164
Figure 16: Global Big Data Revenue in the Financial Services Industry, by Hardware, Software & Professional Services: 2018 – 2030 ($ Million)................ 165
Figure 17: Global Big Data Revenue in the Financial Services Industry, by Submarket: 2018 – 2030 ($ Million) .......................................... 166
Figure 18: Global Big Data Storage and Compute Infrastructure Submarket Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ............... 167
Figure 19: Global Big Data Networking Infrastructure Submarket Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .......................... 167
Figure 20: Global Big Data Hadoop & Infrastructure Software Submarket Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .................. 168
Figure 21: Global Big Data SQL Submarket Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ......................................... 168
Figure 22: Global Big Data NoSQL Submarket Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .......................................... 169
Figure 23: Global Big Data Analytic Platforms & Applications Submarket Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .................... 169
Figure 24: Global Big Data Cloud Platforms Submarket Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ................................ 170
Figure 25: Global Big Data Professional Services Submarket Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ............................. 170
Figure 26: Global Big Data Revenue in the Financial Services Industry, by Application Area: 2018 – 2030 ($ Million)....................................... 171
Figure 27: Global Big Data Revenue in Personal & Business Banking: 2018 – 2030 ($ Million) ........................................................... 172
Figure 28: Global Big Data Revenue in Investment Banking & Capital Markets: 2018 – 2030 ($ Million) ................................................ 172
Figure 29: Global Big Data Revenue in Insurance Services: 2018 – 2030 ($ Million) ................................................................. 173
Figure 30: Global Big Data Revenue in Credit Cards & Payment Processing: 2018 – 2030 ($ Million) ..................................................... 173
Figure 31: Global Big Data Revenue in Lending & Financing: 2018 – 2030 ($ Million) .............................................................. 174
Figure 32: Global Big Data Revenue in Asset & Wealth Management: 2018 – 2030 ($ Million) ......................................................... 174
Figure 33: Global Big Data Revenue in the Financial Services Industry, by Use Case: 2018 – 2030 ($ Million) ............................................. 175
Figure 34: Global Big Data Revenue in Personalized & Targeted Marketing for Financial Services: 2018 – 2030 ($ Million) .................................. 176
Figure 35: Global Big Data Revenue in Customer Service & Experience for Financial Services: 2018 – 2030 ($ Million) .................................... 176
Figure 36: Global Big Data Revenue in Product Innovation & Development for Financial Services: 2018 – 2030 ($ Million) .................................. 177
Figure 37: Global Big Data Revenue in Risk Modeling, Management & Reporting for Financial Services: 2018 – 2030 ($ Million) .............................. 177
Figure 38: Global Big Data Revenue in Fraud Detection & Prevention for Financial Services: 2018 – 2030 ($ Million) ...................................... 178
Figure 39: Global Big Data Revenue in Robotic & Intelligent Process Automation for Financial Services: 2018 – 2030 ($ Million) .............................. 178
Figure 40: Global Big Data Revenue in Usage & Analytics-Based Insurance: 2018 – 2030 ($ Million) ...................................................... 179
Figure 41: Global Big Data Revenue in Credit Scoring & Control: 2018 – 2030 ($ Million) ............................................................. 179
Figure 42: Global Big Data Revenue in Data-Driven Trading & Investment: 2018 – 2030 ($ Million) .................................................. 180
Figure 43: Global Big Data Revenue in Third Party Data Monetization for Financial Services: 2018 – 2030 ($ Million) ..................................... 180
Figure 44: Global Big Data Revenue in Other Use Cases for Financial Services: 2018 – 2030 ($ Million) ................................................. 181
Figure 45: Big Data Revenue in the Financial Services Industry, by Region: 2018 – 2030 ($ Million) .................................................. 182
Figure 46: Asia Pacific Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ...................................................... 183
Figure 47: Asia Pacific Big Data Revenue in the Financial Services Industry, by Country: 2018 – 2030 ($ Million) ........................................ 183
Figure 48: Australia Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .................................................... 184
Figure 49: China Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ......................................................... 184
Figure 50: India Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million)........................................................... 185
Figure 51: Indonesia Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ................................................... 185
Figure 52: Japan Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ......................................................... 186
Figure 53: Malaysia Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .................................................... 186
Figure 54: Pakistan Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ..................................................... 187
Figure 55: Philippines Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ...................................................... 187
Figure 56: Singapore Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ................................................... 188
Figure 57: South Korea Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .................................................... 188
Figure 58: Taiwan Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ....................................................... 189
Figure 59: Thailand Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ..................................................... 189
Figure 60: Rest of Asia Pacific Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ............................................... 190
Figure 61: Eastern Europe Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ............................................... 191
Figure 62: Eastern Europe Big Data Revenue in the Financial Services Industry, by Country: 2018 – 2030 ($ Million) ...................................... 191
Figure 63: Czech Republic Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ................................................ 192
Figure 64: Poland Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ....................................................... 192
Figure 65: Russia Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ........................................................ 193
Figure 66: Rest of Eastern Europe Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ........................................ 193
Figure 67: Latin & Central America Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ............................................ 194
Figure 68: Latin & Central America Big Data Revenue in the Financial Services Industry, by Country: 2018 – 2030 ($ Million) .............................. 194
Figure 69: Argentina Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ................................................... 195
Figure 70: Brazil Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .......................................................... 195
Figure 71: Mexico Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ....................................................... 196
Figure 72: Rest of Latin & Central America Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ..................................... 196
Figure 73: Middle East & Africa Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ............................................ 197
Figure 74: Middle East & Africa Big Data Revenue in the Financial Services Industry, by Country: 2018 – 2030 ($ Million) ................................... 197
Figure 75: Israel Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .......................................................... 198
Figure 76: Qatar Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ......................................................... 198
Figure 77: Saudi Arabia Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .................................................... 199
Figure 78: South Africa Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .................................................... 199
Figure 79: UAE Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ....................................................... 200
Figure 80: Rest of the Middle East & Africa Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .................................... 200
Figure 81: North America Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ................................................ 201
Figure 82: North America Big Data Revenue in the Financial Services Industry, by Country: 2018 – 2030 ($ Million) ....................................... 201
Figure 83: Canada Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ....................................................... 202
Figure 84: USA Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ....................................................... 202
Figure 85: Western Europe Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .............................................. 203
Figure 86: Western Europe Big Data Revenue in the Financial Services Industry, by Country: 2018 – 2030 ($ Million) .................................... 203
Figure 87: Denmark Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .................................................... 204
Figure 88: Finland Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ....................................................... 204
Figure 89: France Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ........................................................ 205
Figure 90: Germany Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .................................................... 205
Figure 91: Italy Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ....................................................... 206
Figure 92: Netherlands Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .................................................... 206
Figure 93: Norway Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ...................................................... 207
Figure 94: Spain Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) .......................................................... 207
Figure 95: Sweden Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ...................................................... 208
Figure 96: UK Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ......................................................... 208
Figure 97: Rest of Western Europe Big Data Revenue in the Financial Services Industry: 2018 – 2030 ($ Million) ............................................ 209
 

 

ページTOPに戻る

あなたが最近チェックしたレポート一覧

  • 最近チェックしたレポートはありません。

お問合は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのお問合せはこちらのフォームから承ります

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

<無料>メルマガに登録する

 

 

ページTOPに戻る