世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

会員登録

マイページ

5G無線のエコシステム【日本版】 2017-2030年:技術、用途、垂直市場、戦略、予測

The 5G Wireless Ecosystem: 2017 – 2030 – Technologies, Applications, Verticals, Strategies & Forecasts – Japan Special Edition

 

出版社 出版年月電子媒体価格ページ数
Signals and Systems Telecom
シグナルズアンドシステムズテレコム
2017年4月US$2,500
シングルユーザライセンス
363

サマリー

英国とドバイに拠点をおく調査会社シグナルズアンドシステムズテレコム/SNSリサーチ (Signals and Systems Telecom/SNS Research)の調査レポート5G無線のエコシステム 2017-2030年:技術、用途、垂直市場、戦略、予測の日本版です。日本の5Gネットワークの国レベルのデータに注目しています。

ABSTRACT

Despite the lack of sufficient LTE coverage in parts of the world, mobile operators and vendors have already embarked on R&D initiatives to develop 5G, the next evolution in mobile networks. 5G is expected to provide a single network environment to deliver not only existing mobile broadband and IoT services, but also new innovations such as self-driving cars, cloud robotics, 3D holographic telepresence and remote surgery with haptic feedback.

In fact, many mobile operators are betting on 5G to diversify their revenue streams, as conventional voice and data service ARPUs decline globally. For example, South Korea's KT has established a dedicated business unit for holograms, which it envisions to be a key source of revenue for its future 5G network.

At present, the 3GPP and other SDOs (Standards Development Organizations) are engaged in defining the first phase of 5G specifications. However, pre-standards 5G network rollouts are already underway, most notably in the United States and South Korea, as mobile operators rush to be the first to offer 5G services. Japan is no exception to this trend with both NTT DoCoMo and SoftBank moving towards large-scale field trials this year. SNS Research estimates that by the end of 2017, Japanese investments on pre-standards 5G networks are expected to account for over $34 Million.

Although 2020 has conventionally been regarded as the headline date for 5G commercialization, the very first standardized deployments of the technology are expected to be commercialized as early as 2019 with the 3GPP's initial 5G specifications set to be implementation-ready by March 2018. Between 2019 and 2023, we expect the Japanese 5G network infrastructure market to aggressively grow a CAGR of nearly 120%, eventually accounting for more than $3.6 Billion in annual spending by the end of 2023. These infrastructure investments will be complemented by annual shipments of up to 18 Million 5G-capable devices.

The “5G Wireless Ecosystem: 2017 – 2030 – Technologies, Applications, Verticals, Strategies & Forecasts – Japan Special Edition” report presents an in-depth assessment of the emerging 5G ecosystem including key market drivers, challenges, enabling technologies, usage scenarios, vertical market applications, mobile operator deployment commitments, case studies, spectrum availability/allocation, standardization, research initiatives and vendor strategies. The report also presents forecasts for 5G investments and operator services.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report, as well as a 5G deployment tracking database covering over 60 global 5G trials, demos and commercial deployment commitments (as of Q1’2017).

This special edition of the report also features an additional Excel datasheet detailing additional forecasts for 5G investments in Japan.
 

ADDITIONAL DETAILS

Topics Covered

The report covers the following topics:

 - 5G NR (New Radio) and NextGen (Next Generation) system architecture
 - Market drivers and barriers to the adoption of 5G networks
 - 5G requirements, usage scenarios, vertical markets and applications
 - Key enabling technologies including air interface design, higher frequency radio access, advanced antenna systems, flexible duplex schemes, D2D (Device-to-Device) connectivity, dynamic spectrum access, self-backhauling and network slicing
 - Complementary concepts including NFV, SDN, hyperscale data centers, Cloud RAN, satellite communications and aerial networking platforms
 - Case studies and review of mobile operator 5G commitments
 - 5G standardization, development and research initiatives
 - Analysis of spectrum availability and allocation strategies for 5G networks
 - Competitive assessment of vendor strategies
 - Review of investments on R&D and pre-standards 5G networks
 - Standardized 5G infrastructure, user equipment and operator service forecasts till 2030

Forecast Segmentation

Market forecasts are provided for each of the following submarkets and their subcategories:

5G R&D Investments

 - New Air Interface & Millimeter Wave Radio Access
 - MIMO, Beamforming & Advanced Antenna Technologies
 - Spectrum Sharing, Aggregation & Interference Management
 - Virtualization & Cloud RAN
 - Network Slicing & Other Technologies

Pre-Standards 5G Network Investments

 - Pre-Standards Base Stations
 - Pre-Standards User Equipment
 - Transport Networking & Other Investments

Standardized 5G Infrastructure Investments

 - 5G NR (New Radio)
    Distributed Macrocell Base Stations
    Small Cells
    RRHs (Remote Radio Heads)
    C-RAN BBUs (Baseband Units)
 - NextGen (Next Generation) Core Network
 - Fronthaul & Backhaul Networking

Standardized 5G User Equipment Investments

 - Handsets
 - Tablets
 - Embedded IoT Modules
 - USB Dongles
 - Routers

5G Operator Services

 - Subscriptions
 - Service Revenue

Regional Segmentation

 - Japan
 - Asia Pacific
 - Eastern Europe
 - Latin & Central America
 - Middle East & Africa
 - North America
 - Western Europe

Key Questions Answered

The report provides answers to the following key questions:

 - How big is the opportunity for 5G network infrastructure, user equipment and operator services?
 - What trends, challenges and barriers will influence the development and adoption of 5G?
 - How will 5G drive the adoption of AR (Augmented Reality)/VR (Virtual Reality) applications such as 3D holographic telepresence and 360 degree streaming of live events?
 - How have advanced antenna and chip technologies made it possible to utilize millimeter wave spectrum for mobile communications in 5G networks?
 - How can non-orthogonal multiple access schemes such as RSMA (Resource Spread Multiple Access) enable 5G networks to support higher connection densities for Millions of IoT devices?
 - What will be the number of 5G subscriptions in 2019 and at what rate will it grow?
 - Which regions and countries will be the first to adopt 5G?
 - Which frequency bands are most likely to be utilized by 5G networks?
 - Who are the key 5G vendors and what are their strategies?
 - Will 5G networks rely on a disaggregated RAN architecture?
 - How will 5G impact the fiber industry?
 - Will satellite communications and aerial networking platforms play a wider role in 5G networks?

Key Findings

The report has the following key findings:

 - The Unites States, South Korea and Japan are spearheading early investments in pre-standards 5G trial networks, as mobile operators rush to be the first to offer 5G networks. SNS Research estimates that by the end of 2017, Japanese investments on pre-standards 5G networks are expected to account for over $34 Million.
 - Following completion of the 3GPP's first phase of 5G specifications in March 2018, SNS Research expects that early adopters across the globe will simultaneously begin commercializing  5G services in 2019.
 - Between 2019 and 2023, we expect the Japanese 5G network infrastructure market to aggressively grow a CAGR of nearly 120%, eventually accounting for more than $3.6 Billion in annual spending by the end of 2023. These infrastructure investments will be complemented by annual shipments of up to 18 Million 5G-capable devices.
 - Although early 5G R&D investments have primarily targeted the radio access segment, network-slicing has recently emerged as necessary ""end-to-end"" capability to guarantee performance for different 5G applications which may have contrasting requirements.
 - In order to support diverse usage scenarios, 5G networks are expected to utilize a variety of frequency bands ranging from established sub-6 GHz cellular bands to millimeter wave spectrum.

 

SUBJECT/KEY WORDS

5G, Millimeter Wave, MIMO, Beamforming, Network Slicing, Virtualization, Mobile Broadband, Automotive, Healthcare, Industrial Automation, AR (Augmented Reality), VR (Virtual Reality), Fixed Wireless, V2X, Autonomous Driving, Critical Communications, IoT
 



目次

1    Chapter 1: Introduction    24
1.1    Executive Summary    24
1.2    Topics Covered    26
1.3    Forecast Segmentation    27
1.4    Key Questions Answered    29
1.5    Key Findings    30
1.6    Methodology    31
1.7    Target Audience    32
1.8    Companies & Organizations Mentioned    33
        
2    Chapter 2: The Evolving 5G Ecosystem    38
2.1    What is 5G?    38
2.2    High-Level Architecture of 5G Networks    38
2.2.1    5G NR (New Radio) Access Network    38
2.2.2    NextGen (Next Generation) Core Network    40
2.3    5G Performance Requirements    40
2.3.1    Data Volume    41
2.3.2    Data Rate    41
2.3.3    Bandwidth    41
2.3.4    Spectral Efficiency    42
2.3.5    Response Time & Latency    42
2.3.6    Connection Density    43
2.3.7    Reliability    43
2.3.8    Mobility    43
2.3.9    Availability & Coverage    44
2.3.10    Energy Efficiency    44
2.4    5G Market Drivers    44
2.4.1    Why the Need for a 5G Standard?    44
2.4.2    Improving Spectrum Utilization    45
2.4.3    Advances in Key Enabling Technologies    45
2.4.4    Gigabit Wireless Connectivity: Supporting Future Services    46
2.4.5    Extreme Device Densities with the IoT (Internet of Things)    46
2.4.6    Moving Towards a Flatter Network Architecture    46
2.4.7    Role of Vertical Sectors & the 4th Industrial Revolution    47
2.5    Challenges & Inhibitors to 5G    47
2.5.1    Standardization Challenges: Too Many Stakeholders    47
2.5.2    Spectrum Regulation & Complexities    48
2.5.3    Massive MIMO, Beamforming & Antenna Technology Issues    48
2.5.4    Higher Frequencies Mean New Infrastructure    48
2.5.5    Complex Performance Requirements    49
2.5.6    Energy Efficiency & Technology Scaling    49
        
3    Chapter 3: 5G Usage Scenarios, Applications & Vertical Markets    50
3.1    Usage Scenarios    50
3.1.1    eMBB (Enhanced Mobile Broadband)    50
3.1.2    URLCC (Ultra-Reliable and Low Latency Communications)    51
3.1.3    mMTC (Massive Machine-Type Communications)    51
3.2    Key Applications & Vertical Markets    52
3.2.1    Consumer & Multi-Sector Applications    52
3.2.1.1    FWA (Fixed Wireless Access)    52
3.2.1.2    TV & Media Delivery    54
3.2.1.3    3D Imaging & Holograms    55
3.2.1.4    Virtual Presence    55
3.2.1.5    AR (Augmented Reality)    56
3.2.1.6    VR (Augmented Reality)    57
3.2.1.7    Real-Time Gaming    57
3.2.1.8    Tactile Internet    58
3.2.1.9    Mobile Cloud Services    59
3.2.1.10    5G Enabled Robotics    59
3.2.1.11    Connected Drones    60
3.2.1.12    Smart & Connected Homes    60
3.2.1.13    Connectivity for Smart Wearables    61
3.2.1.14    Conventional Mobile Broadband & Other Applications    61
3.2.2    Healthcare    62
3.2.2.1    Telemedicine    62
3.2.2.2    Bio-Connectivity: Enabling Telecare    63
3.2.2.3    Remote Surgery & Other Applications    63
3.2.3    Automotive & Transportation    64
3.2.3.1    Connected Cars: Infotainment, Navigation & Other Services    64
3.2.3.2    C-V2X (Cellular Vehicle-to-Everything) Communications    65
3.2.3.3    Autonomous Driving    66
3.2.3.4    Intelligent Transportation    67
3.2.3.5    Connectivity for High-Speed Railway, Aerial & Maritime Environments    67
3.2.4    Public Safety & Critical Communications    68
3.2.4.1    MCPTT (Mission-Critical Push-to-Talk)    68
3.2.4.2    Off-Network Secure Communications    68
3.2.4.3    Situational Awareness    69
3.2.4.4    Disaster Relief & Other Applications    69
3.2.5    Industrial Automation    70
3.2.5.1    5G Enabled Smart Factories    70
3.2.5.2    Machine Vision    70
3.2.5.3    Extending the Factory Floor To the Cloud    71
3.2.5.4    Real-Time Assistance & Other Applications    71
3.2.6    Other Vertical Sector Applications    72
3.2.6.1    Agriculture    72
3.2.6.2    Asset Management & Logistics    72
3.2.6.3    Construction    73
3.2.6.4    Education    73
3.2.6.5    Energy, Utilities & Smart Grids    74
3.2.6.6    Fitness & Sports    74
3.2.6.7    Retail, Advertising & Vending    75
3.2.6.8    Smart Cities & Other Sectors    75
        
4    Chapter 4: Enabling Technologies for 5G    77
4.1    Key Technologies & Concepts    77
4.1.1    Flexible Air Interface Design    77
4.1.1.1    Frame Structure    77
4.1.1.2    Multiple Numerologies    78
4.1.1.3    Other Aspects    79
4.1.2    5G Waveform Candidates    79
4.1.2.1    CP-OFDM (OFDM with Cyclic Prefix)    79
4.1.2.2    CP-OFDM with WOLA (Weighted Overlap and Add)    80
4.1.2.3    FCP-OFDM (Flexible CP-OFDM)    80
4.1.2.4    F-OFDM (Filtered OFDM)    80
4.1.2.5    BF-OFDM (Block Filtered OFDM)    81
4.1.2.6    FBMC (Filter Bank Multi-Carrier)/FB-OFDM (Filter Bank OFDM)    81
4.1.2.7    UFMC (Universal Filtered Multi-Carrier)/UF-OFDM (Universal Filtered OFDM)    82
4.1.2.8    GFDM (Generalized Frequency Division Multiplexing)    82
4.1.2.9    SC-FDM (Single Carrier FDM)/DFT-S OFDM (Discrete Fourier Transform-Spread OFDM)    82
4.1.2.10    Zero-Tail SC-FDM/DFT-S OFDM    83
4.1.2.11    SC-FDE (Single-Carrier Frequency Domain Equalization)    83
4.1.2.12    Other Options    83
4.1.3    Modulation Schemes    84
4.1.3.1    Initial Baseline for 5G NR    84
4.1.3.2    Going Beyond 256-QAM: Higher Order Modulations    85
4.1.3.3    Other Advanced Modulation Schemes    85
4.1.4    Multiple Access Schemes    87
4.1.4.1    OFDMA (Orthogonal Frequency Division Multiple Access)    87
4.1.4.2    SC-FDMA (Single-Carrier Frequency Division Multiple Access)    87
4.1.4.3    SDMA (Spatial Division Multiple Access)    87
4.1.4.4    Power Domain NOMA (Non-Orthogonal Multiple Access)    88
4.1.4.5    Code Domain Techniques    88
4.1.4.5.1    MUSA (Multi-User Shared Access)    88
4.1.4.5.2    RSMA (Resource Spread Multiple Access)    89
4.1.4.5.3    LSSA (Low Code Rate and Signature Based Shared Access)    89
4.1.4.5.4    NOCA (Non-Orthogonal Coded Access)    90
4.1.4.5.5    NCMA (Non-Orthogonal Coded Multiple Access)    90
4.1.4.5.6    GOCA (Group Orthogonal Coded Access)    91
4.1.4.6    Hybrid-Domain & Interleaver-Based Techniques    91
4.1.4.6.1    SCMA (Spare Code Multiple Access)    91
4.1.4.6.2    PDMA (Pattern Division Multiple Access)    91
4.1.4.6.3    IDMA (Interleaver Division Multiple Access)    92
4.1.4.6.4    IGMA (Interleave-Grid Multiple Access)    92
4.1.4.6.5    RDMA (Repetition Division Multiple Access)    92
4.1.4.7    Other Methods    93
4.1.5    Channel Coding Schemes    94
4.1.5.1    LDPC (Low Density Parity Check) Coding    94
4.1.5.2    Polar Coding    94
4.1.6    Duplex Schemes    95
4.1.6.1    Dynamic TDD for Higher Frequencies    95
4.1.6.2    FDD and FDP (Flexible Duplexing on Paired Spectrum)    95
4.1.6.3    Full Duplex    96
4.1.7    Centimeter & Millimeter Wave Radio Access    97
4.1.8    Advanced Antenna Technologies    98
4.1.8.1    Massive MIMO & MU-MIMO    98
4.1.8.2    Phased Array Antennas    99
4.1.8.3    Beamforming & Beam Tracking    100
4.1.9    D2D (Device-to-Device) Connectivity & Communication    101
4.1.10    Self-Backhauling & Mesh Networking    102
4.1.11    Spectrum Sharing & Aggregation    103
4.1.11.1    Complex Carrier Aggregation Schemes    103
4.1.11.2    LSA (Licensed Shared Access): Two-Tiered Sharing    103
4.1.11.3    SAS (Spectrum Access System): Three-Tiered Sharing    104
4.1.11.4    LAA (License Assisted Access): Licensed & Unlicensed Spectrum Aggregation    106
4.1.11.5    New Mechanisms for 60 GHz Unlicensed Spectrum Sharing    107
4.1.11.6    MulteFire    107
4.1.11.7    Cognitive Radio & Spectrum Sensing    108
4.1.12    Multi-Site & Multi-RAN Connectivity    108
4.1.12.1    Dual-Connectivity with LTE    108
4.1.12.2    Interoperability with Wi-Fi & Other Networks    108
4.1.12.3    Multi-Site Connectivity & User Centric Cell Access    108
4.1.13    Control and User Plane Separation    109
4.1.14    Network Slicing    110
4.1.14.1    RAN Slicing    111
4.1.14.2    Core Network Slicing    111
4.1.14.3    End-to-End Network Slicing    112
4.1.15    Service Based Architecture    113
4.1.16    Network Security & Privacy Enhancements    114
4.2    Complementary Technologies    115
4.2.1    NFV & SDN    115
4.2.2    Cloud Computing & Hyperscale Data Centers    117
4.2.3    DevOps & Other IT Concepts    117
4.2.4    Big Data & Analytics    118
4.2.5    UDNs (Ultra Dense Networks) & HetNets    118
4.2.6    RAN Centralization & Functional Splitting    119
4.2.6.1    C-RAN (Centralized RAN)    119
4.2.6.2    RAN Functional Split Options    121
4.2.7    Cloud RAN    123
4.2.8    MEC (Multi-Access Edge Computing)    124
4.2.9    Wireline Fiber Infrastructure    125
4.2.9.1    Impact of 5G Rollouts on the Fiber Industry    125
4.2.9.2    Delivering Tbps Data Rates    125
4.2.9.3    Current Investment Trends    125
4.2.9.4    Role of Other Wireline Technologies    126
4.2.10    VLC (Visible Light Communication) & Li-Fi (Light Fidelity)    126
4.2.11    Satellites, Drones & Balloons    127
4.2.11.1    Satellite Integration for 5G Access & Transport Networking    127
4.2.11.2    Low-Earth Orbit Satellites for Gigabit Speeds: Existing Investments    128
4.2.11.3    Drones & Balloons for Coverage Extension    128
4.2.11.4    Interest from Mobile Operators    129
        
5    Chapter 5: 5G Investments & Future Forecast    130
5.1    How Much is Being Invested in 5G R&D?    130
5.2    R&D Investments by Technology    131
5.2.1    New Air Interface & Millimeter Wave Radio Access    132
5.2.2    MIMO, Beamforming & Advanced Antenna Technologies    133
5.2.3    Spectrum Sharing, Aggregation & Interference Management    134
5.2.4    Virtualization & Cloud RAN    135
5.2.5    Network Slicing & Other Technologies    136
5.3    Pre-Standards 5G Network Investments    137
5.3.1    Segmentation by Submarket    138
5.3.2    Base Stations    139
5.3.3    User Equipment    140
5.3.4    Transport Networking & Other Investments    141
5.4    Global Outlook for Standardized 5G Infrastructure    142
5.4.1    Segmentation by Submarket    143
5.4.2    5G NR    143
5.4.2.1    Distributed Macrocell Base Stations    144
5.4.2.2    Small Cells    145
5.4.2.3    RRHs (Remote Radio Heads)    146
5.4.2.4    C-RAN BBUs (Baseband Units)    147
5.4.3    NextGen Core Network    148
5.4.4    Fronthaul & Backhaul Networking    149
5.4.5    Segmentation by Region    149
5.5    Global Outlook for Standardized 5G User Equipment    150
5.5.1    Segmentation by Form Factor    151
5.5.2    Handsets    152
5.5.3    Tablets    153
5.5.4    Embedded IoT Modules    154
5.5.5    USB Dongles    155
5.5.6    Routers    156
5.5.7    Segmentation by Region    157
5.6    Global Outlook for 5G Operator Services    158
5.6.1    Subscriptions    158
5.6.2    Service Revenue    158
5.6.3    Regional Segmentation    159
5.7    Asia Pacific    160
5.7.1    Infrastructure    160
5.7.2    User Equipment    160
5.7.3    Subscriptions    161
5.7.4    Service Revenue    162
5.8    Eastern Europe    163
5.8.1    Infrastructure    163
5.8.2    User Equipment    163
5.8.3    Subscriptions    164
5.8.4    Service Revenue    165
5.9    Latin & Central America    166
5.9.1    Infrastructure    166
5.9.2    User Equipment    166
5.9.3    Subscriptions    167
5.9.4    Service Revenue    168
5.10    Middle East & Africa    169
5.10.1    Infrastructure    169
5.10.2    User Equipment    169
5.10.3    Subscriptions    170
5.10.4    Service Revenue    171
5.11    North America    172
5.11.1    Infrastructure    172
5.11.2    User Equipment    172
5.11.3    Subscriptions    173
5.11.4    Service Revenue    174
5.12    Western Europe    175
5.12.1    Infrastructure    175
5.12.2    User Equipment    175
5.12.3    Subscriptions    176
5.12.4    Service Revenue    177
        
6    Chapter 6: Mobile Operator Case Studies & Commitments    178
6.1.1    Mobile Operator Case Studies    178
6.1.1.1    AT&T    178
6.1.1.2    BT Group    182
6.1.1.3    China Mobile    184
6.1.1.4    DT (Deutsche Telekom)    187
6.1.1.5    KT Corporation    191
6.1.1.6    NTT DoCoMo    195
6.1.1.7    SK Telecom    199
6.1.1.8    Telefónica    204
6.1.1.9    Verizon Communications    207
6.1.1.10    Vodafone Group    210
6.2    Review of Mobile Operator 5G Commitments    213
6.2.1    Asia Pacific    213
6.2.1.1    Australia    213
6.2.1.2    China    214
6.2.1.3    Hong Kong    215
6.2.1.4    India    215
6.2.1.5    Japan    215
6.2.1.6    Philippines    217
6.2.1.7    Singapore    217
6.2.1.8    South Korea    218
6.2.1.9    Taiwan    219
6.2.1.10    Thailand    221
6.2.2    Europe    222
6.2.2.1    Belgium    222
6.2.2.2    Finland    222
6.2.2.3    France    222
6.2.2.4    Germany    223
6.2.2.5    Italy    223
6.2.2.6    Netherlands    224
6.2.2.7    Russia    224
6.2.2.8    Sweden    225
6.2.2.9    Switzerland    225
6.2.2.10    Turkey    226
6.2.2.11    United Kingdom    226
6.2.2.12    Other Countries    227
6.2.3    Latin & Central America    228
6.2.3.1    Brazil    228
6.2.3.2    Mexico    229
6.2.4    Middle East & Africa    230
6.2.4.1    Bahrain    230
6.2.4.2    Kuwait    230
6.2.4.3    Other Countries    230
6.2.4.4    Qatar    231
6.2.4.5    Saudi Arabia    231
6.2.4.6    UAE    231
6.2.5    North America    233
6.2.5.1    Canada    233
6.2.5.2    United States    233
        
7    Chapter 7: Spectrum for 5G Networks    237
7.1    Potential Frequency Bands for 5G    237
7.1.1    Sub-1 GHz Bands    238
7.1.2    1-6 GHz Bands    239
7.1.2.1    3.4 GHz    239
7.1.2.2    3.5 GHz    239
7.1.2.3    4.5 GHz    239
7.1.2.4    5 GHz    240
7.1.3    Bands Above 6 GHz    240
7.1.3.1    15 GHz    240
7.1.3.2    24-30 GHz    240
7.1.3.3    30-60 GHz    241
7.1.3.4    E-Band (60-90 GHz)    241
7.1.3.5    Higher Bands    241
7.2    Status of 5G Spectrum Allocation    242
7.3    Asia Pacific    242
7.3.1    Australia    242
7.3.2    China    242
7.3.3    Japan    243
7.3.4    Singapore    243
7.3.5    South Korea    244
7.3.6    Taiwan    244
7.3.7    Other Countries    244
7.4    Europe    245
7.4.1    European Commission & CEPT Recommendations    245
7.4.2    National Initiatives    246
7.5    Latin & Central America    247
7.5.1    CITEL Recommendations    247
7.5.2    National Initiatives    248
7.6    Middle East & Africa    248
7.6.1    GCC Countries    248
7.6.2    Africa & Other Countries    249
7.7    North America    249
7.7.1    Canada    249
7.7.2    United States    249
        
8    Chapter 8: 5G Standardization, Development & Research Initiatives    251
8.1    3GPP (Third Generation Partnership Project)    251
8.1.1    Phased Standardization Approach    251
8.1.1.1    Phase 1: Release 15    252
8.1.1.2    Phase 2: Release 16    253
8.1.1.3    Enhancements to Address 5G Objectives in Earlier Releases    253
8.1.2    Key Aspects of 5G Standardization    253
8.1.2.1    5G NR Access Network    253
8.1.2.2    Support for Other Access Networks    254
8.1.2.3    NextGen System Architecture    254
8.1.2.4    Deployment Modes: Non-Standalone vs. Standalone Operation    256
8.2    5G Americas    258
8.2.1    5G Advocacy Efforts    258
8.3    5GAA (5G Automotive Association)    259
8.3.1    Advocacy for 5G & Cellular V2X Technology    259
8.3.2    Other Alliances in the Automotive Sector    259
8.4    Broadband Forum    260
8.4.1    Broadband 20/20 Vision: Convergence of 5G Mobile & Fixed Networks    260
8.5    CableLabs    260
8.5.1    Research on High Capacity Millimeter Wave Small Cells    260
8.5.2    Other Work Relevant to 5G    261
8.6    DSA (Dynamic Spectrum Alliance)    261
8.6.1    Dynamic Spectrum Sharing for 5G    261
8.7    ETSI (European Telecommunications Standards Institute)    262
8.7.1    ISGs (Industry Specification Groups) for 5G Enabling Technologies    262
8.7.1.1    mWT ISG (Millimeter Wave Transmission ISG)    262
8.7.1.2    ISG NFV (ISG for Network Functions Virtualization)    262
8.7.1.3    OSG OSM (Open Source Group for Open Source MANO)    263
8.7.1.4    ISG MEC (ISG for Multi Access Edge Computing)    263
8.7.1.5    ISG NGP (ISG for Next Generation Protocols)    263
8.7.1.6    ISG MBC (ISG for Mobile/Broadcast Convergence)    263
8.7.2    Other Work    263
8.8    GSMA    264
8.8.1    5G Program & Spectrum Policy    264
8.9    GTI    265
8.9.1    5G Innovation Program    265
8.10    IEEE (Institute of Electrical and Electronics Engineers)    266
8.10.1    IEEE Future Directions 5G Initiative    266
8.10.2    Contribution to 5G Standards Development    266
8.11    IETF (Internet Engineering Task Force)    267
8.11.1    Contribution to 5G NextGen Core Standards    267
8.11.1.1    5Gangip (5G Aspects of Next Generation Internet Protocols) Special Group    267
8.11.1.2    Proposed NMLRG (Network Machine Learning Research Group)    268
8.11.1.3    Internet-Draft on Network Slicing    268
8.11.1.4    Other Work Relevant to 5G    268
8.12    ITU (International Telecommunication Union)    269
8.12.1    IMT-2020 Family of Standards    269
8.12.2    WP 5D (Working Party 5D)    270
8.12.3    FG IMT-2020 (Focus Group on IMT-2020)    271
8.12.4    Spectrum Allocation    272
8.13    NGMN (Next Generation Mobile Networks) Alliance    273
8.13.1    5G Work Program    273
8.13.1.1    Ecosystem Building & Interaction    273
8.13.1.2    Guidance to SDOs & the Wider Industry    273
8.13.1.3    Evaluation of Test & PoC Results    274
8.13.2    New Work-Items    274
8.13.2.1    5G Trial & Testing Initiative    274
8.13.2.2    End-to-End Architecture    274
8.13.2.3    Vehicle-to-X    274
8.14    OCP (Open Compute Project) Foundation    275
8.14.1    Telco Project    275
8.15    ONF (Open Networking Foundation) & ON.Lab (Open Networking Lab)    276
8.15.1    CORD (Central Office Re-Architected as a Datacenter)    276
8.15.2    M-CORD (M-Central Office Re-Architected as a Datacenter)    277
8.16    SIMalliance    278
8.16.1    5GWG (5G Working Group): Recommendations for 5G Security    278
8.17    Small Cell Forum    280
8.17.1    Mapping 5G Requirements for Small Cells    280
8.18    TIP (Telecom Infra Project)    281
8.18.1    OpenCellular Access Platform    281
8.18.2    Open Optical Packet Transport    281
8.18.3    Mobile Core Simplification    282
8.19    TM Forum    282
8.19.1    5G Working Group    282
8.20    Wi-Fi Alliance    282
8.20.1    Positioning WiGig as a 5G Technology    283
8.20.2    Other Work Relevant to 5G    283
8.21    WBA (Wireless Broadband Alliance)    284
8.21.1    Advocacy Efforts for 5G Convergence with Wi-Fi    284
8.22    WinnForum (Wireless Innovation Forum)    284
8.22.1    Spectrum Sharing Specifications for LTE & 5G Networks    284
8.23    WWRF (World Wireless Research Forum)    285
8.23.1    New WGs (Working Groups) for 5G    285
8.23.1.1    WG High Frequency Technologies    285
8.23.1.2    WG 5G e/m-Health and Wearables    286
8.23.1.3    WG The Connected Car    286
8.23.1.4    WG End-to-End Network Slicing    287
8.24    xRAN Consortium    288
8.24.1    Standardization for Software-Based RAN    288
8.25    Other Collaborative & Standardization Organizations    289
8.26    European Initiatives    290
8.26.1    5G PPP (5G Infrastructure Public Private Partnership)    290
8.26.1.1    5G IA (5G Infrastructure Association)    291
8.26.1.2    Key Working Groups    291
8.26.1.3    Major Research Projects    292
8.26.2    European Commission's 5G Roadmap    297
8.26.2.1    Phase 1: The Future of 5G Network Architecture    297
8.26.2.2    Phase 2: Demonstrations & Experiments    297
8.26.2.3    Phase 3: Integration of End-to-End 5G experimental network infrastructure    298
8.26.3    5G Manifesto    299
8.26.4    5G Action Plan    300
8.27    National Initiatives    301
8.27.1    United States    301
8.27.1.1    NSF (National Science Foundation)    301
8.27.1.2    NIST (National Institute of Standards and Technology)    301
8.27.1.3    ATIS (Alliance for Telecommunications Industry Solutions)    302
8.27.1.4    TIA (Telecommunications Industry Association)    302
8.27.2    South Korea    303
8.27.2.1    5G Forum    303
8.27.2.2    ETRI (Electronics and Telecommunications Research)    303
8.27.2.3    TTA (Telecommunications Technology Association of Korea)    304
8.27.3    Japan    304
8.27.3.1    ARIB (Association of Radio Industries and Businesses)    304
8.27.3.2    TTC (Telecommunication Technology Committee)    305
8.27.3.3    5GMF (Fifth Generation Mobile Communications Promotion Forum)    305
8.27.4    China    307
8.27.4.1    IMT-2020 5G Promotion Group    307
8.27.4.2    CCSA (China Communications Standards Association)    308
8.27.4.3    863 Research Program    308
8.27.4.4    FuTURE Mobile Communication Forum    309
8.27.5    Taiwan    309
8.27.5.1    ITRI (Industrial Technology Research Institute)    309
8.27.5.2    TAICS (Taiwan Association of Information and Communication Standards)    309
8.27.6    Turkey    310
8.27.6.1    ICTA (Information and Communication Technologies Authority)    310
8.27.6.2    5GTR (Turkish 5G Forum)    310
8.27.7    Malaysia    310
8.27.7.1    MTSFB (Malaysian Technical Standards Forum Bhd)    310
8.27.7.2    Malaysia 5G Committee    311
8.27.8    Indonesia    311
8.27.8.1    i5GF (Indonesia 5G Forum)    311
8.27.9    India    311
8.27.9.1    TSDSI (Telecommunications Standards Development Society India)    311
8.27.9.2    GISFI (Global ICT Standardization Forum for India)    311
8.27.10    Russia    312
8.27.10.1    5GRUS    312
8.28    Mobile Operator Led Initiatives & Innovation Labs    313
8.28.1    Pre-Standards Deployment Initiatives    313
8.28.1.1    5G TSA (5G Open Trial Specification Alliance)    313
8.28.1.2    5GTF (5G Technical Forum), Verizon Communications    313
8.28.1.3    5G-SIG (Special Interest Group), KT Corporation    313
8.28.1.4    5G-DF (5G Development Forum), KT Corporation    314
8.28.2    Innovation Labs    314
8.28.2.1    5G Innovation Center, China Mobile    314
8.28.2.2    5G:Haus, DT (Deutsche Telekom)    315
8.28.2.3    5TONIC, Telefónica    315
8.28.2.4    Others    316
8.29    Academic & Research Institute Initiatives    317
8.29.1    5G Lab Germany at TU Dresden    317
8.29.2    5G Playground, Fraunhofer FOKUS    317
8.29.3    5GIC (5G Innovation Center, University of Surrey)    319
8.29.4    5GTNF (5G Test Network Finland), University of Oulu    320
8.29.5    Hiroshima University    320
8.29.6    NYU WIRELESS (New York University)    321
8.29.7    OSA (OpenAirInterface Software Alliance), EURECOM    322
8.29.8    Tokyo Institute of Technology    323
8.29.9    UC Berkeley (University of California, Berkeley)    324
8.29.10    USC (University of Southern California) Viterbi School of Engineering    324
8.29.11    UT Austin (University of Texas at Austin)    325
8.29.12    WINLAB (Wireless Information Network Laboratory), Rutgers University    325
        
9    Chapter 9: Vendor Demonstrations, Commitments & Strategies    327
9.1    Argela    327
9.1.1    5G Strategy    327
9.1.2    Demonstrations & Trial Commitments    327
9.2    Cisco Systems    328
9.2.1    5G Strategy    328
9.2.2    Demonstrations & Trial Commitments    328
9.3    Cohere Technologies    329
9.3.1    5G Strategy    329
9.3.2    Demonstrations & Trial Commitments    329
9.4    Ericsson    330
9.4.1    5G Strategy    330
9.4.2    Demonstrations & Trial Commitments    330
9.5    Fujitsu    333
9.5.1    5G Strategy    333
9.5.2    Demonstrations & Trial Commitments    333
9.6    Google    335
9.6.1    5G Strategy    335
9.6.2    Demonstrations & Trial Commitments    335
9.7    Huawei    336
9.7.1    5G Strategy    336
9.7.2    Demonstrations & Trial Commitments    336
9.8    Intel Corporation    339
9.8.1    5G Strategy    339
9.8.2    Demonstrations & Trial Commitments    339
9.9    InterDigital    341
9.9.1    5G Strategy    341
9.9.2    Demonstrations & Trial Commitments    341
9.10    Juniper Networks    342
9.10.1    5G Strategy    342
9.10.2    Demonstrations & Trial Commitments    342
9.11    Keysight Technologies    343
9.11.1    5G Strategy    343
9.11.2    Demonstrations & Trial Commitments    343
9.12    Kumu Networks    345
9.12.1    5G Strategy    345
9.12.2    Demonstrations & Trial Commitments    345
9.13    LG Electronics    346
9.13.1    5G Strategy    346
9.13.2    Demonstrations & Trial Commitments    346
9.14    Mitsubishi Electric    347
9.14.1    5G Strategy    347
9.14.2    Demonstrations & Trial Commitments    347
9.15    NEC Corporation    348
9.15.1    5G Strategy    348
9.15.2    Demonstrations & Trial Commitments    348
9.16    NI (National Instruments)    350
9.16.1    5G Strategy    350
9.16.2    Demonstrations & Trial Commitments    350
9.17    Nokia Networks    351
9.17.1    5G Strategy    351
9.17.2    Demonstrations & Trial Commitments    351
9.18    Panasonic Corporation    354
9.18.1    5G Strategy    354
9.18.2    Demonstrations & Trial Commitments    354
9.19    Qorvo    355
9.19.1    5G Strategy    355
9.19.2    Demonstrations & Trial Commitments    355
9.20    Qualcomm    356
9.20.1    5G Strategy    356
9.20.2    Demonstrations & Trial Commitments    356
9.21    Rohde & Schwarz    358
9.21.1    5G Strategy    358
9.21.2    Demonstrations & Trial Commitments    358
9.22    Samsung Electronics    359
9.22.1    5G Strategy    359
9.22.2    Demonstrations & Trial Commitments    359
9.23    SiBEAM    361
9.23.1    5G Strategy    361
9.23.2    Demonstrations & Trial Commitments    361
9.24    ZTE    362
9.24.1    5G Strategy    362
9.24.2    Demonstrations & Trial Commitments    362
  

     
List of Figures

    Figure 1: 5G Network Architecture & Interaction with Other Networks    39
    Figure 2: 5G Performance Requirements    40
    Figure 3: 5G FWA (Fixed Wireless Access) Deployment Alternatives    53
    Figure 4: Convergence of 5G with Wireline Networks    53
    Figure 5: 5G for TV & Media Delivery    54
    Figure 6: Example Usage Scenarios for C-V2X (Cellular Vehicle-to-Everything)    65
    Figure 7: Example Channel Bandwidths for 5G Networks    78
    Figure 8: Impact of Massive MIMO on Cell Coverage & Capacity    98
    Figure 9: Sidelink Air Interface for ProSe (Proximity Services)    101
    Figure 10: LSA (License Shared Access) Regulatory Architecture    104
    Figure 11: Conceptual Architecture for End-to-End Network Slicing in Mobile Networks    110
    Figure 12: Service Based Architecture for 5G    113
    Figure 13: NFV Concept    115
    Figure 14: Transition to UDNs (Ultra-Dense Networks)    119
    Figure 15: C-RAN Architecture    120
    Figure 16: RAN Functional Split Options    121
    Figure 17: Performance Comparison of RAN Functional Split Options    122
    Figure 18: Cloud RAN Concept    123
    Figure 19: Global 5G R&D Investments: 2016 - 2020 ($ Million)    130
    Figure 20: Global 5G R&D Investments by Technology: 2016 - 2020 ($ Million)    131
    Figure 21: Global 5G R&D Investments on New Air Interface & Millimeter Wave Radio Access: 2016 - 2020 ($ Million)    132
    Figure 22: Global 5G R&D Investments on MIMO, Beamforming & Advanced Antenna Technologies: 2016 - 2020 ($ Million)    133
    Figure 23: Global 5G R&D Investments on Spectrum Sharing, Aggregation & Interference Management: 2016 - 2020 ($ Million)    134
    Figure 24: Global 5G R&D Investments on Virtualization & Cloud RAN: 2016 - 2020 ($ Million)    135
    Figure 25: Global 5G R&D Investments on Network Slicing & Other Technologies: 2016 - 2020 ($ Million)    136
    Figure 26: Global Pre-Standards 5G Network Investments: 2016 - 2018 ($ Million)    137
    Figure 27: Global Pre-Standards 5G Network Investments by Submarket: 2016 - 2018 ($ Million)    138
    Figure 28: Global Pre-Standards 5G Base Station Shipments: 2016 - 2018 (Units)    139
    Figure 29: Global Pre-Standards 5G Base Station Shipment Revenue: 2016 - 2018 ($ Million)    139
    Figure 30: Global Pre-Standards 5G User Equipment Shipments: 2016 - 2018 (Units)    140
    Figure 31: Global Pre-Standards 5G User Equipment Shipment Revenue: 2016 - 2018 ($ Million)    140
    Figure 32: Global Transport Networking & Other Investments for Pre-Standards 5G Networks: 2016 - 2018 ($ Million)    141
    Figure 33: Global 5G Infrastructure Investments: 2019 - 2030 ($ Million)    142
    Figure 34: Global 5G Infrastructure Investments by Submarket: 2019 - 2030 ($ Million)    143
    Figure 35: Global 5G NR Investments: 2019 - 2030 ($ Million)    143
    Figure 36: Global 5G NR Investments by Submarket: 2019 - 2030 ($ Million)    144
    Figure 37: Global 5G Distributed Macrocell Base Station Shipments: 2019 - 2030 (Thousands of Units)    144
    Figure 38: Global 5G Distributed Macrocell Base Station Shipment Revenue: 2019 - 2030 ($ Million)    145
    Figure 39: Global 5G Small Cell Shipments: 2019 - 2030 (Thousands of Units)    145
    Figure 40: Global 5G Small Cell Shipment Revenue: 2019 - 2030 ($ Million)    146
    Figure 41: Global 5G RRH Shipments: 2019 - 2030 (Thousands of Units)    146
    Figure 42: Global 5G RRH Shipment Revenue: 2019 - 2030 ($ Million)    147
    Figure 43: Global 5G C-RAN BBU Shipments: 2019 - 2030 (Thousands of Units)    147
    Figure 44: Global 5G C-RAN BBU Shipment Revenue: 2019 - 2030 ($ Million)    148
    Figure 45: Global NextGen Core Network Investments: 2019 - 2030 ($ Million)    148
    Figure 46: Global 5G Fronthaul & Backhaul Investments: 2019 - 2030 ($ Million)    149
    Figure 47: 5G Infrastructure Investments by Region: 2019 - 2030 ($ Million)    149
    Figure 48: Global 5G Device Unit Shipments: 2019 - 2030 (Millions of Units)    150
    Figure 49: Global 5G Device Unit Shipment Revenue: 2019 - 2030 ($ Billion)    150
    Figure 50: Global 5G Device Unit Shipments by Form Factor: 2019 - 2030 (Millions of Units)    151
    Figure 51: Global 5G Device Unit Shipment Revenue by Form Factor: 2019 - 2030 ($ Billion)    151
    Figure 52: Global 5G Handset Shipments: 2019 - 2030 (Millions of Units)    152
    Figure 53: Global 5G Handset Shipment Revenue: 2019 - 2030 ($ Billion)    152
    Figure 54: Global 5G Tablet Shipments: 2019 - 2030 (Millions of Units)    153
    Figure 55: Global 5G Tablet Shipment Revenue: 2019 - 2030 ($ Billion)    153
    Figure 56: Global 5G Embedded IoT Module Shipments: 2019 - 2030 (Millions of Units)    154
    Figure 57: Global 5G Embedded IoT Module Shipment Revenue: 2019 - 2030 ($ Billion)    154
    Figure 58: Global 5G USB Dongle Shipments: 2019 - 2030 (Millions of Units)    155
    Figure 59: Global 5G USB Dongle Shipment Revenue: 2019 - 2030 ($ Billion)    155
    Figure 60: Global 5G Router Shipments: 2019 - 2030 (Millions of Units)    156
    Figure 61: Global 5G Router Shipment Revenue: 2019 - 2030 ($ Billion)    156
    Figure 62: 5G Device Unit Shipments by Region: 2019 - 2030 (Millions of Units)    157
    Figure 63: 5G Device Unit Shipment Revenue by Region: 2019 - 2030 ($ Billion)    157
    Figure 64: Global 5G Subscriptions: 2019 - 2030 (Millions)    158
    Figure 65: Global 5G Service Revenue: 2019 - 2030 ($ Billion)    158
    Figure 66: 5G Subscriptions by Region: 2019 - 2030 (Millions)    159
    Figure 67: 5G Service Revenue by Region: 2019 - 2030 ($ Billion)    159
    Figure 68: Asia Pacific 5G Infrastructure Investments: 2019 - 2030 ($ Million)    160
    Figure 69: Asia Pacific 5G Device Unit Shipments: 2019 - 2030 (Thousands of Units)    160
    Figure 70: Asia Pacific 5G Device Unit Shipment Revenue: 2019 - 2030 ($ Billion)    161
    Figure 71: Asia Pacific 5G Subscriptions: 2019 - 2030 (Millions)    161
    Figure 72: Asia Pacific 5G Service Revenue: 2019 - 2030 ($ Billion)    162
    Figure 73: Eastern Europe 5G Infrastructure Investments: 2019 - 2030 ($ Million)    163
    Figure 74: Eastern Europe 5G Device Unit Shipments: 2019 - 2030 (Thousands of Units)    163
    Figure 75: Eastern Europe 5G Device Unit Shipment Revenue: 2019 - 2030 ($ Billion)    164
    Figure 76: Eastern Europe 5G Subscriptions: 2019 - 2030 (Millions)    164
    Figure 77: Eastern Europe 5G Service Revenue: 2019 - 2030 ($ Billion)    165
    Figure 78: Latin & Central America 5G Infrastructure Investments: 2019 - 2030 ($ Million)    166
    Figure 79: Latin & Central America 5G Device Unit Shipments: 2019 - 2030 (Thousands of Units)    166
    Figure 80: Latin & Central America 5G Device Unit Shipment Revenue: 2019 - 2030 ($ Billion)    167
    Figure 81: Latin & Central America 5G Subscriptions: 2019 - 2030 (Millions)    167
    Figure 82: Latin & Central America 5G Service Revenue: 2019 - 2030 ($ Billion)    168
    Figure 83: Middle East & Africa 5G Infrastructure Investments: 2019 - 2030 ($ Million)    169
    Figure 84: Middle East & Africa 5G Device Unit Shipments: 2019 - 2030 (Thousands of Units)    169
    Figure 85: Middle East & Africa 5G Device Unit Shipment Revenue: 2019 - 2030 ($ Billion)    170
    Figure 86: Middle East & Africa 5G Subscriptions: 2019 - 2030 (Millions)    170
    Figure 87: Middle East & Africa 5G Service Revenue: 2019 - 2030 ($ Billion)    171
    Figure 88: North America 5G Infrastructure Investments: 2019 - 2030 ($ Million)    172
    Figure 89: North America 5G Device Unit Shipments: 2019 - 2030 (Thousands of Units)    172
    Figure 90: North America 5G Device Unit Shipment Revenue: 2019 - 2030 ($ Billion)    173
    Figure 91: North America 5G Subscriptions: 2019 - 2030 (Millions)    173
    Figure 92: North America 5G Service Revenue: 2019 - 2030 ($ Billion)    174
    Figure 93: Western Europe 5G Infrastructure Investments: 2019 - 2030 ($ Million)    175
    Figure 94: Western Europe 5G Device Unit Shipments: 2019 - 2030 (Thousands of Units)    175
    Figure 95: Western Europe 5G Device Unit Shipment Revenue: 2019 - 2030 ($ Billion)    176
    Figure 96: Western Europe 5G Subscriptions: 2019 - 2030 (Millions)    176
    Figure 97: Western Europe 5G Service Revenue: 2019 - 2030 ($ Billion)    177
    Figure 98: Configuration and Key Performance Metrics for KT's Pre-Commercial 5G Network    191
    Figure 99: NTT DoCoMo’s 5G Roadmap    196
    Figure 100: SK Telecom’s Phased 5G Approach    200
    Figure 101: SK Telecom's View on BBU-RRH Functional Split Options for 5G C-RAN    201
    Figure 102: Key Characteristics of Verizon's 5G Specifications    209
    Figure 103: Distribution of 5G Trials & Demos by Frequency Band: Q1'2017 (%)    237
    Figure 104: 3GPP 5G Standardization Roadmap    252
    Figure 105: High Level View for NextGen System Architecture    254
    Figure 106: Key Features in Phase 1 of 3GPP's NextGen System Architecture    256
    Figure 107: Non-Standalone Deployment Mode for 5G Networks    257
    Figure 108: Standalone Deployment Mode for 5G Networks    257
    Figure 109: Comparison of IMT-2020 and IMT-Advanced Performance Requirements    270
    Figure 110: IMT-2020 Development Roadmap    271
    Figure 111: M-CORD Focus Areas    277
    Figure 112: Common Security Threats in 5G Networks    279
    Figure 113: European Commission's 5G Networks & Service Vision    290
    Figure 114: European Commission's 5G Roadmap    298
    Figure 115: ARIB’s Vision of Radio Access Technologies for 5G    305
    Figure 116: 5GMF's 5G Implementation Roadmap    306
    Figure 117: IMT-2020 5G Promotion Group's 5G Implementation Roadmap    307

 

ページTOPに戻る

あなたが最近チェックしたレポート一覧

  • 最近チェックしたレポートはありません。

お問い合せは、お電話・メール・WEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのお問い合せはこちらのフォームから承ります

office@dri.co.jp

 

ページTOPに戻る